517 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/***************************************************************************
 | 
						|
 | 
						|
Interface between g++ and Boehm GC
 | 
						|
 | 
						|
    Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
 | 
						|
 | 
						|
    THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 | 
						|
    OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 | 
						|
 | 
						|
    Permission is hereby granted to copy this code for any purpose,
 | 
						|
    provided the above notices are retained on all copies.
 | 
						|
 | 
						|
    Last modified on Sun Jul 16 23:21:14 PDT 1995 by ellis
 | 
						|
 | 
						|
This module provides runtime support for implementing the
 | 
						|
Ellis/Detlefs GC proposal, "Safe, Efficient Garbage Collection for
 | 
						|
C++", within g++, using its -fgc-keyword extension.  It defines
 | 
						|
versions of __builtin_new, __builtin_new_gc, __builtin_vec_new,
 | 
						|
__builtin_vec_new_gc, __builtin_delete, and __builtin_vec_delete that
 | 
						|
invoke the Bohem GC.  It also implements the WeakPointer.h interface.
 | 
						|
 | 
						|
This module assumes the following configuration options of the Boehm GC:
 | 
						|
 | 
						|
    -DALL_INTERIOR_POINTERS
 | 
						|
    -DDONT_ADD_BYTE_AT_END   
 | 
						|
 | 
						|
This module adds its own required padding to the end of objects to
 | 
						|
support C/C++ "one-past-the-object" pointer semantics.
 | 
						|
 | 
						|
****************************************************************************/
 | 
						|
 | 
						|
#include <stddef.h>
 | 
						|
#include "gc.h"
 | 
						|
 | 
						|
#if defined(__STDC__) 
 | 
						|
#   define PROTO( args ) args
 | 
						|
#else
 | 
						|
#    define PROTO( args ) ()
 | 
						|
#    endif
 | 
						|
 | 
						|
#define BITSPERBYTE 8     
 | 
						|
    /* What's the portable way to do this? */
 | 
						|
 | 
						|
 | 
						|
typedef void (*vfp) PROTO(( void ));
 | 
						|
extern vfp __new_handler;
 | 
						|
extern void __default_new_handler PROTO(( void ));
 | 
						|
 | 
						|
 | 
						|
/* A destructor_proc is the compiler generated procedure representing a 
 | 
						|
C++ destructor.  The "flag" argument is a hidden argument following some
 | 
						|
compiler convention. */
 | 
						|
 | 
						|
typedef (*destructor_proc) PROTO(( void* this, int flag ));
 | 
						|
 | 
						|
 | 
						|
/***************************************************************************
 | 
						|
 | 
						|
A BI_header is the header the compiler adds to the front of
 | 
						|
new-allocated arrays of objects with destructors.  The header is
 | 
						|
padded out to a double, because that's what the compiler does to
 | 
						|
ensure proper alignment of array elements on some architectures.  
 | 
						|
 | 
						|
int NUM_ARRAY_ELEMENTS (void* o)
 | 
						|
    returns the number of array elements for array object o.
 | 
						|
 | 
						|
char* FIRST_ELEMENT_P (void* o)
 | 
						|
    returns the address of the first element of array object o.
 | 
						|
 | 
						|
***************************************************************************/
 | 
						|
 | 
						|
typedef struct BI_header {
 | 
						|
    int nelts;
 | 
						|
    char padding [sizeof( double ) - sizeof( int )]; 
 | 
						|
        /* Better way to do this? */
 | 
						|
} BI_header;
 | 
						|
 | 
						|
#define NUM_ARRAY_ELEMENTS( o ) \
 | 
						|
  (((BI_header*) o)->nelts)
 | 
						|
 | 
						|
#define FIRST_ELEMENT_P( o ) \
 | 
						|
  ((char*) o + sizeof( BI_header ))
 | 
						|
 | 
						|
 | 
						|
/***************************************************************************
 | 
						|
 | 
						|
The __builtin_new routines add a descriptor word to the end of each
 | 
						|
object.   The descriptor serves two purposes.  
 | 
						|
 | 
						|
First, the descriptor acts as padding, implementing C/C++ pointer
 | 
						|
semantics.  C and C++ allow a valid array pointer to be incremented
 | 
						|
one past the end of an object.  The extra padding ensures that the
 | 
						|
collector will recognize that such a pointer points to the object and
 | 
						|
not the next object in memory.
 | 
						|
 | 
						|
Second, the descriptor stores three extra pieces of information,
 | 
						|
whether an object has a registered finalizer (destructor), whether it
 | 
						|
may have any weak pointers referencing it, and for collectible arrays,
 | 
						|
the element size of the array.  The element size is required for the
 | 
						|
array's finalizer to iterate through the elements of the array.  (An
 | 
						|
alternative design would have the compiler generate a finalizer
 | 
						|
procedure for each different array type.  But given the overhead of
 | 
						|
finalization, there isn't any efficiency to be gained by that.)
 | 
						|
 | 
						|
The descriptor must be added to non-collectible as well as collectible
 | 
						|
objects, since the Ellis/Detlefs proposal allows "pointer to gc T" to
 | 
						|
be assigned to a "pointer to T", which could then be deleted.  Thus,
 | 
						|
__builtin_delete must determine at runtime whether an object is
 | 
						|
collectible, whether it has weak pointers referencing it, and whether
 | 
						|
it may have a finalizer that needs unregistering.  Though
 | 
						|
GC_REGISTER_FINALIZER doesn't care if you ask it to unregister a
 | 
						|
finalizer for an object that doesn't have one, it is a non-trivial
 | 
						|
procedure that does a hash look-up, etc.  The descriptor trades a
 | 
						|
little extra space for a significant increase in time on the fast path
 | 
						|
through delete.  (A similar argument applies to
 | 
						|
GC_UNREGISTER_DISAPPEARING_LINK).
 | 
						|
 | 
						|
For non-array types, the space for the descriptor could be shrunk to a
 | 
						|
single byte for storing the "has finalizer" flag.  But this would save
 | 
						|
space only on arrays of char (whose size is not a multiple of the word
 | 
						|
size) and structs whose largest member is less than a word in size
 | 
						|
(very infrequent).  And it would require that programmers actually
 | 
						|
remember to call "delete[]" instead of "delete" (which they should,
 | 
						|
but there are probably lots of buggy programs out there).  For the
 | 
						|
moment, the space savings seems not worthwhile, especially considering
 | 
						|
that the Boehm GC is already quite space competitive with other
 | 
						|
malloc's.
 | 
						|
 | 
						|
 | 
						|
Given a pointer o to the base of an object:
 | 
						|
 | 
						|
Descriptor* DESCRIPTOR (void* o) 
 | 
						|
     returns a pointer to the descriptor for o.
 | 
						|
 | 
						|
The implementation of descriptors relies on the fact that the GC
 | 
						|
implementation allocates objects in units of the machine's natural
 | 
						|
word size (e.g. 32 bits on a SPARC, 64 bits on an Alpha).
 | 
						|
 | 
						|
**************************************************************************/
 | 
						|
 | 
						|
typedef struct Descriptor {
 | 
						|
    unsigned has_weak_pointers: 1;
 | 
						|
    unsigned has_finalizer: 1;
 | 
						|
    unsigned element_size: BITSPERBYTE * sizeof( unsigned ) - 2; 
 | 
						|
} Descriptor;
 | 
						|
 | 
						|
#define DESCRIPTOR( o ) \
 | 
						|
  ((Descriptor*) ((char*)(o) + GC_size( o ) - sizeof( Descriptor )))
 | 
						|
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 | 
						|
Implementations of global operator new() and operator delete()
 | 
						|
 | 
						|
***************************************************************************/
 | 
						|
 | 
						|
 | 
						|
void* __builtin_new( size ) 
 | 
						|
    size_t size;
 | 
						|
    /* 
 | 
						|
    For non-gc non-array types, the compiler generates calls to
 | 
						|
    __builtin_new, which allocates non-collected storage via
 | 
						|
    GC_MALLOC_UNCOLLECTABLE.  This ensures that the non-collected
 | 
						|
    storage will be part of the collector's root set, required by the
 | 
						|
    Ellis/Detlefs semantics. */
 | 
						|
{
 | 
						|
    vfp handler = __new_handler ? __new_handler : __default_new_handler;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        void* o = GC_MALLOC_UNCOLLECTABLE( size + sizeof( Descriptor ) );
 | 
						|
        if (o != 0) return o;
 | 
						|
        (*handler) ();}}
 | 
						|
 | 
						|
 | 
						|
void* __builtin_vec_new( size ) 
 | 
						|
    size_t size;
 | 
						|
    /* 
 | 
						|
    For non-gc array types, the compiler generates calls to
 | 
						|
    __builtin_vec_new. */
 | 
						|
{
 | 
						|
    return __builtin_new( size );}
 | 
						|
 | 
						|
 | 
						|
void* __builtin_new_gc( size )
 | 
						|
    size_t size;
 | 
						|
    /* 
 | 
						|
    For gc non-array types, the compiler generates calls to
 | 
						|
    __builtin_new_gc, which allocates collected storage via
 | 
						|
    GC_MALLOC. */
 | 
						|
{
 | 
						|
    vfp handler = __new_handler ? __new_handler : __default_new_handler;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        void* o = GC_MALLOC( size + sizeof( Descriptor ) );
 | 
						|
        if (o != 0) return o;
 | 
						|
        (*handler) ();}}
 | 
						|
 | 
						|
 | 
						|
void* __builtin_new_gc_a( size )
 | 
						|
    size_t size;
 | 
						|
    /* 
 | 
						|
    For non-pointer-containing gc non-array types, the compiler
 | 
						|
    generates calls to __builtin_new_gc_a, which allocates collected
 | 
						|
    storage via GC_MALLOC_ATOMIC. */
 | 
						|
{
 | 
						|
    vfp handler = __new_handler ? __new_handler : __default_new_handler;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        void* o = GC_MALLOC_ATOMIC( size + sizeof( Descriptor ) );
 | 
						|
        if (o != 0) return o;
 | 
						|
        (*handler) ();}}
 | 
						|
 | 
						|
 | 
						|
void* __builtin_vec_new_gc( size )
 | 
						|
    size_t size;
 | 
						|
    /*
 | 
						|
    For gc array types, the compiler generates calls to
 | 
						|
    __builtin_vec_new_gc. */
 | 
						|
{
 | 
						|
    return __builtin_new_gc( size );}
 | 
						|
 | 
						|
 | 
						|
void* __builtin_vec_new_gc_a( size )
 | 
						|
    size_t size;
 | 
						|
    /*
 | 
						|
    For non-pointer-containing gc array types, the compiler generates
 | 
						|
    calls to __builtin_vec_new_gc_a. */
 | 
						|
{
 | 
						|
    return __builtin_new_gc_a( size );}
 | 
						|
 | 
						|
 | 
						|
static void call_destructor( o, data )
 | 
						|
    void* o;
 | 
						|
    void* data;
 | 
						|
    /* 
 | 
						|
    call_destructor is the GC finalizer proc registered for non-array
 | 
						|
    gc objects with destructors.  Its client data is the destructor
 | 
						|
    proc, which it calls with the magic integer 2, a special flag
 | 
						|
    obeying the compiler convention for destructors. */
 | 
						|
{
 | 
						|
    ((destructor_proc) data)( o, 2 );}
 | 
						|
 | 
						|
 | 
						|
void* __builtin_new_gc_dtor( o, d )
 | 
						|
    void* o;
 | 
						|
    destructor_proc d;
 | 
						|
    /* 
 | 
						|
    The compiler generates a call to __builtin_new_gc_dtor to register
 | 
						|
    the destructor "d" of a non-array gc object "o" as a GC finalizer.
 | 
						|
    The destructor is registered via
 | 
						|
    GC_REGISTER_FINALIZER_IGNORE_SELF, which causes the collector to
 | 
						|
    ignore pointers from the object to itself when determining when
 | 
						|
    the object can be finalized.  This is necessary due to the self
 | 
						|
    pointers used in the internal representation of multiply-inherited
 | 
						|
    objects. */
 | 
						|
{
 | 
						|
    Descriptor* desc = DESCRIPTOR( o );
 | 
						|
 | 
						|
    GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_destructor, d, 0, 0 );
 | 
						|
    desc->has_finalizer = 1;}
 | 
						|
 | 
						|
 | 
						|
static void call_array_destructor( o, data )
 | 
						|
    void* o;
 | 
						|
    void* data;
 | 
						|
    /*
 | 
						|
    call_array_destructor is the GC finalizer proc registered for gc
 | 
						|
    array objects whose elements have destructors. Its client data is
 | 
						|
    the destructor proc.  It iterates through the elements of the
 | 
						|
    array in reverse order, calling the destructor on each. */
 | 
						|
{
 | 
						|
    int num = NUM_ARRAY_ELEMENTS( o );
 | 
						|
    Descriptor* desc = DESCRIPTOR( o );
 | 
						|
    size_t size = desc->element_size;
 | 
						|
    char* first_p = FIRST_ELEMENT_P( o );
 | 
						|
    char* p = first_p + (num - 1) * size;
 | 
						|
 | 
						|
    if (num > 0) {
 | 
						|
        while (1) {
 | 
						|
            ((destructor_proc) data)( p, 2 );
 | 
						|
            if (p == first_p) break;
 | 
						|
            p -= size;}}}
 | 
						|
 | 
						|
 | 
						|
void* __builtin_vec_new_gc_dtor( first_elem, d, element_size )
 | 
						|
    void* first_elem;
 | 
						|
    destructor_proc d;
 | 
						|
    size_t element_size;
 | 
						|
    /* 
 | 
						|
    The compiler generates a call to __builtin_vec_new_gc_dtor to
 | 
						|
    register the destructor "d" of a gc array object as a GC
 | 
						|
    finalizer.  "first_elem" points to the first element of the array,
 | 
						|
    *not* the beginning of the object (this makes the generated call
 | 
						|
    to this function smaller).  The elements of the array are of size
 | 
						|
    "element_size".  The destructor is registered as in
 | 
						|
    _builtin_new_gc_dtor. */
 | 
						|
{
 | 
						|
    void* o = (char*) first_elem - sizeof( BI_header );
 | 
						|
    Descriptor* desc = DESCRIPTOR( o );
 | 
						|
 | 
						|
    GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_array_destructor, d, 0, 0 );
 | 
						|
    desc->element_size = element_size;
 | 
						|
    desc->has_finalizer = 1;}
 | 
						|
 | 
						|
 | 
						|
void __builtin_delete( o )
 | 
						|
    void* o;
 | 
						|
    /* 
 | 
						|
    The compiler generates calls to __builtin_delete for operator
 | 
						|
    delete().  The GC currently requires that any registered
 | 
						|
    finalizers be unregistered before explicitly freeing an object.
 | 
						|
    If the object has any weak pointers referencing it, we can't
 | 
						|
    actually free it now. */
 | 
						|
{
 | 
						|
  if (o != 0) { 
 | 
						|
      Descriptor* desc = DESCRIPTOR( o );
 | 
						|
      if (desc->has_finalizer) GC_REGISTER_FINALIZER( o, 0, 0, 0, 0 );
 | 
						|
      if (! desc->has_weak_pointers) GC_FREE( o );}}
 | 
						|
 | 
						|
 | 
						|
void __builtin_vec_delete( o )
 | 
						|
    void* o;
 | 
						|
    /* 
 | 
						|
    The compiler generates calls to __builitn_vec_delete for operator
 | 
						|
    delete[](). */
 | 
						|
{
 | 
						|
  __builtin_delete( o );}
 | 
						|
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 | 
						|
Implementations of the template class WeakPointer from WeakPointer.h
 | 
						|
 | 
						|
***************************************************************************/
 | 
						|
 | 
						|
typedef struct WeakPointer {
 | 
						|
    void* pointer; 
 | 
						|
} WeakPointer;
 | 
						|
 | 
						|
 | 
						|
void* _WeakPointer_New( t )
 | 
						|
    void* t;
 | 
						|
{
 | 
						|
    if (t == 0) {
 | 
						|
        return 0;}
 | 
						|
    else {
 | 
						|
        void* base = GC_base( t );
 | 
						|
        WeakPointer* wp = 
 | 
						|
            (WeakPointer*) GC_MALLOC_ATOMIC( sizeof( WeakPointer ) );
 | 
						|
        Descriptor* desc = DESCRIPTOR( base );
 | 
						|
 | 
						|
        wp->pointer = t;
 | 
						|
        desc->has_weak_pointers = 1;
 | 
						|
        GC_general_register_disappearing_link( &wp->pointer, base );
 | 
						|
        return wp;}}
 | 
						|
 | 
						|
 | 
						|
static void* PointerWithLock( wp ) 
 | 
						|
    WeakPointer* wp;
 | 
						|
{
 | 
						|
    if (wp == 0 || wp->pointer == 0) {
 | 
						|
      return 0;}
 | 
						|
    else {
 | 
						|
        return (void*) wp->pointer;}}
 | 
						|
 | 
						|
 | 
						|
void* _WeakPointer_Pointer( wp )
 | 
						|
    WeakPointer* wp;
 | 
						|
{
 | 
						|
    return (void*) GC_call_with_alloc_lock( PointerWithLock, wp );}
 | 
						|
 | 
						|
 | 
						|
typedef struct EqualClosure {
 | 
						|
    WeakPointer* wp1;
 | 
						|
    WeakPointer* wp2;
 | 
						|
} EqualClosure;
 | 
						|
 | 
						|
 | 
						|
static void* EqualWithLock( ec )
 | 
						|
    EqualClosure* ec;
 | 
						|
{
 | 
						|
    if (ec->wp1 == 0 || ec->wp2 == 0) {
 | 
						|
        return (void*) (ec->wp1 == ec->wp2);}
 | 
						|
    else {
 | 
						|
      return (void*) (ec->wp1->pointer == ec->wp2->pointer);}}
 | 
						|
 | 
						|
 | 
						|
int _WeakPointer_Equal( wp1,  wp2 )
 | 
						|
    WeakPointer* wp1;
 | 
						|
    WeakPointer* wp2;
 | 
						|
{
 | 
						|
    EqualClosure ec;
 | 
						|
 | 
						|
    ec.wp1 = wp1;
 | 
						|
    ec.wp2 = wp2;
 | 
						|
    return (int) GC_call_with_alloc_lock( EqualWithLock, &ec );}
 | 
						|
 | 
						|
 | 
						|
int _WeakPointer_Hash( wp )
 | 
						|
    WeakPointer* wp;
 | 
						|
{
 | 
						|
    return (int) _WeakPointer_Pointer( wp );}
 | 
						|
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
 | 
						|
Implementations of the template class CleanUp from WeakPointer.h
 | 
						|
 | 
						|
***************************************************************************/
 | 
						|
 | 
						|
typedef struct Closure {
 | 
						|
    void (*c) PROTO(( void* d, void* t ));
 | 
						|
    ptrdiff_t t_offset; 
 | 
						|
    void* d;
 | 
						|
} Closure;
 | 
						|
 | 
						|
 | 
						|
static void _CleanUp_CallClosure( obj, data ) 
 | 
						|
    void* obj;
 | 
						|
    void* data;
 | 
						|
{
 | 
						|
    Closure* closure = (Closure*) data;
 | 
						|
    closure->c( closure->d, (char*) obj + closure->t_offset );}
 | 
						|
 | 
						|
 | 
						|
void _CleanUp_Set( t, c, d ) 
 | 
						|
    void* t;
 | 
						|
    void (*c) PROTO(( void* d, void* t ));
 | 
						|
    void* d;
 | 
						|
{
 | 
						|
    void* base = GC_base( t );
 | 
						|
    Descriptor* desc = DESCRIPTOR( t );
 | 
						|
 | 
						|
    if (c == 0) {
 | 
						|
        GC_REGISTER_FINALIZER_IGNORE_SELF( base, 0, 0, 0, 0 );
 | 
						|
        desc->has_finalizer = 0;}
 | 
						|
    else {
 | 
						|
        Closure* closure = (Closure*) GC_MALLOC( sizeof( Closure ) );
 | 
						|
        closure->c = c;
 | 
						|
        closure->t_offset = (char*) t - (char*) base;
 | 
						|
        closure->d = d;
 | 
						|
        GC_REGISTER_FINALIZER_IGNORE_SELF( base, _CleanUp_CallClosure, 
 | 
						|
                                           closure, 0, 0 );
 | 
						|
        desc->has_finalizer = 1;}}
 | 
						|
 | 
						|
 | 
						|
void _CleanUp_Call( t ) 
 | 
						|
    void* t;
 | 
						|
{
 | 
						|
      /* ? Aren't we supposed to deactivate weak pointers to t too? 
 | 
						|
         Why? */
 | 
						|
    void* base = GC_base( t );
 | 
						|
    void* d;
 | 
						|
    GC_finalization_proc f;
 | 
						|
 | 
						|
    GC_REGISTER_FINALIZER( base, 0, 0, &f, &d );
 | 
						|
    f( base, d );}
 | 
						|
 | 
						|
 | 
						|
typedef struct QueueElem {
 | 
						|
    void* o;
 | 
						|
    GC_finalization_proc f;
 | 
						|
    void* d;
 | 
						|
    struct QueueElem* next; 
 | 
						|
} QueueElem;
 | 
						|
 | 
						|
 | 
						|
void* _CleanUp_Queue_NewHead()
 | 
						|
{
 | 
						|
    return GC_MALLOC( sizeof( QueueElem ) );}
 | 
						|
    
 | 
						|
     
 | 
						|
static void _CleanUp_Queue_Enqueue( obj, data )
 | 
						|
    void* obj; 
 | 
						|
    void* data;
 | 
						|
{
 | 
						|
    QueueElem* q = (QueueElem*) data;
 | 
						|
    QueueElem* head = q->next;
 | 
						|
 | 
						|
    q->o = obj;
 | 
						|
    q->next = head->next;
 | 
						|
    head->next = q;}
 | 
						|
    
 | 
						|
    
 | 
						|
void _CleanUp_Queue_Set( h, t ) 
 | 
						|
    void* h;
 | 
						|
    void* t;
 | 
						|
{
 | 
						|
    QueueElem* head = (QueueElem*) h;
 | 
						|
    void* base = GC_base( t );
 | 
						|
    void* d;
 | 
						|
    GC_finalization_proc f;
 | 
						|
    QueueElem* q = (QueueElem*) GC_MALLOC( sizeof( QueueElem ) );
 | 
						|
     
 | 
						|
    GC_REGISTER_FINALIZER( base, _CleanUp_Queue_Enqueue, q, &f, &d );
 | 
						|
    q->f = f;
 | 
						|
    q->d = d;
 | 
						|
    q->next = head;}
 | 
						|
    
 | 
						|
 | 
						|
int _CleanUp_Queue_Call( h ) 
 | 
						|
    void* h;
 | 
						|
{
 | 
						|
    QueueElem* head = (QueueElem*) h;
 | 
						|
    QueueElem* q = head->next;
 | 
						|
 | 
						|
    if (q == 0) {
 | 
						|
        return 0;}
 | 
						|
    else {
 | 
						|
        head->next = q->next;
 | 
						|
        q->next = 0;
 | 
						|
        if (q->f != 0) q->f( q->o, q->d );
 | 
						|
        return 1;}}
 | 
						|
 | 
						|
 | 
						|
 |