1698 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1698 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*
 | |
|  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
 | |
|  * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
 | |
|  * Copyright (c) 2000 by Hewlett-Packard Company.  All rights reserved.
 | |
|  *
 | |
|  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 | |
|  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 | |
|  *
 | |
|  * Permission is hereby granted to use or copy this program
 | |
|  * for any purpose,  provided the above notices are retained on all copies.
 | |
|  * Permission to modify the code and to distribute modified code is granted,
 | |
|  * provided the above notices are retained, and a notice that the code was
 | |
|  * modified is included with the above copyright notice.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| # include <stdio.h>
 | |
| # include "private/gc_pmark.h"
 | |
| 
 | |
| /* We put this here to minimize the risk of inlining. */
 | |
| /*VARARGS*/
 | |
| #ifdef __WATCOMC__
 | |
|   void GC_noop(void *p, ...) {}
 | |
| #else
 | |
|   void GC_noop() {}
 | |
| #endif
 | |
| 
 | |
| /* Single argument version, robust against whole program analysis. */
 | |
| void GC_noop1(x)
 | |
| word x;
 | |
| {
 | |
|     static VOLATILE word sink;
 | |
| 
 | |
|     sink = x;
 | |
| }
 | |
| 
 | |
| /* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
 | |
| 
 | |
| word GC_n_mark_procs = GC_RESERVED_MARK_PROCS;
 | |
| 
 | |
| /* Initialize GC_obj_kinds properly and standard free lists properly.  	*/
 | |
| /* This must be done statically since they may be accessed before 	*/
 | |
| /* GC_init is called.							*/
 | |
| /* It's done here, since we need to deal with mark descriptors.		*/
 | |
| struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
 | |
| /* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
 | |
| 		0 | GC_DS_LENGTH, FALSE, FALSE },
 | |
| /* NORMAL  */ { &GC_objfreelist[0], 0,
 | |
| 		0 | GC_DS_LENGTH,  /* Adjusted in GC_init_inner for EXTRA_BYTES */
 | |
| 		TRUE /* add length to descr */, TRUE },
 | |
| /* UNCOLLECTABLE */
 | |
| 	      { &GC_uobjfreelist[0], 0,
 | |
| 		0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
 | |
| # ifdef ATOMIC_UNCOLLECTABLE
 | |
|    /* AUNCOLLECTABLE */
 | |
| 	      { &GC_auobjfreelist[0], 0,
 | |
| 		0 | GC_DS_LENGTH, FALSE /* add length to descr */, FALSE },
 | |
| # endif
 | |
| # ifdef STUBBORN_ALLOC
 | |
| /*STUBBORN*/ { &GC_sobjfreelist[0], 0,
 | |
| 		0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
 | |
| # endif
 | |
| };
 | |
| 
 | |
| # ifdef ATOMIC_UNCOLLECTABLE
 | |
| #   ifdef STUBBORN_ALLOC
 | |
|       int GC_n_kinds = 5;
 | |
| #   else
 | |
|       int GC_n_kinds = 4;
 | |
| #   endif
 | |
| # else
 | |
| #   ifdef STUBBORN_ALLOC
 | |
|       int GC_n_kinds = 4;
 | |
| #   else
 | |
|       int GC_n_kinds = 3;
 | |
| #   endif
 | |
| # endif
 | |
| 
 | |
| 
 | |
| # ifndef INITIAL_MARK_STACK_SIZE
 | |
| #   define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
 | |
| 		/* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a 	*/
 | |
| 		/* multiple of HBLKSIZE.				*/
 | |
| 		/* The incremental collector actually likes a larger	*/
 | |
| 		/* size, since it want to push all marked dirty objs	*/
 | |
| 		/* before marking anything new.  Currently we let it	*/
 | |
| 		/* grow dynamically.					*/
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * Limits of stack for GC_mark routine.
 | |
|  * All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
 | |
|  * need to be marked from.
 | |
|  */
 | |
| 
 | |
| word GC_n_rescuing_pages;	/* Number of dirty pages we marked from */
 | |
| 				/* excludes ptrfree pages, etc.		*/
 | |
| 
 | |
| mse * GC_mark_stack;
 | |
| 
 | |
| mse * GC_mark_stack_limit;
 | |
| 
 | |
| word GC_mark_stack_size = 0;
 | |
|  
 | |
| #ifdef PARALLEL_MARK
 | |
|   mse * VOLATILE GC_mark_stack_top;
 | |
| #else
 | |
|   mse * GC_mark_stack_top;
 | |
| #endif
 | |
| 
 | |
| static struct hblk * scan_ptr;
 | |
| 
 | |
| mark_state_t GC_mark_state = MS_NONE;
 | |
| 
 | |
| GC_bool GC_mark_stack_too_small = FALSE;
 | |
| 
 | |
| GC_bool GC_objects_are_marked = FALSE;	/* Are there collectable marked	*/
 | |
| 					/* objects in the heap?		*/
 | |
| 
 | |
| /* Is a collection in progress?  Note that this can return true in the	*/
 | |
| /* nonincremental case, if a collection has been abandoned and the	*/
 | |
| /* mark state is now MS_INVALID.					*/
 | |
| GC_bool GC_collection_in_progress()
 | |
| {
 | |
|     return(GC_mark_state != MS_NONE);
 | |
| }
 | |
| 
 | |
| /* clear all mark bits in the header */
 | |
| void GC_clear_hdr_marks(hhdr)
 | |
| register hdr * hhdr;
 | |
| {
 | |
| #   ifdef USE_MARK_BYTES
 | |
|       BZERO(hhdr -> hb_marks, MARK_BITS_SZ);
 | |
| #   else
 | |
|       BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
 | |
| #   endif
 | |
| }
 | |
| 
 | |
| /* Set all mark bits in the header.  Used for uncollectable blocks. */
 | |
| void GC_set_hdr_marks(hhdr)
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     register int i;
 | |
| 
 | |
|     for (i = 0; i < MARK_BITS_SZ; ++i) {
 | |
| #     ifdef USE_MARK_BYTES
 | |
|     	hhdr -> hb_marks[i] = 1;
 | |
| #     else
 | |
|     	hhdr -> hb_marks[i] = ONES;
 | |
| #     endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear all mark bits associated with block h.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| # if defined(__STDC__) || defined(__cplusplus)
 | |
|     static void clear_marks_for_block(struct hblk *h, word dummy)
 | |
| # else
 | |
|     static void clear_marks_for_block(h, dummy)
 | |
|     struct hblk *h;
 | |
|     word dummy;
 | |
| # endif
 | |
| {
 | |
|     register hdr * hhdr = HDR(h);
 | |
|     
 | |
|     if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
 | |
|         /* Mark bit for these is cleared only once the object is 	*/
 | |
|         /* explicitly deallocated.  This either frees the block, or	*/
 | |
|         /* the bit is cleared once the object is on the free list.	*/
 | |
|     GC_clear_hdr_marks(hhdr);
 | |
| }
 | |
| 
 | |
| /* Slow but general routines for setting/clearing/asking about mark bits */
 | |
| void GC_set_mark_bit(p)
 | |
| ptr_t p;
 | |
| {
 | |
|     register struct hblk *h = HBLKPTR(p);
 | |
|     register hdr * hhdr = HDR(h);
 | |
|     register int word_no = (word *)p - (word *)h;
 | |
|     
 | |
|     set_mark_bit_from_hdr(hhdr, word_no);
 | |
| }
 | |
| 
 | |
| void GC_clear_mark_bit(p)
 | |
| ptr_t p;
 | |
| {
 | |
|     register struct hblk *h = HBLKPTR(p);
 | |
|     register hdr * hhdr = HDR(h);
 | |
|     register int word_no = (word *)p - (word *)h;
 | |
|     
 | |
|     clear_mark_bit_from_hdr(hhdr, word_no);
 | |
| }
 | |
| 
 | |
| GC_bool GC_is_marked(p)
 | |
| ptr_t p;
 | |
| {
 | |
|     register struct hblk *h = HBLKPTR(p);
 | |
|     register hdr * hhdr = HDR(h);
 | |
|     register int word_no = (word *)p - (word *)h;
 | |
|     
 | |
|     return(mark_bit_from_hdr(hhdr, word_no));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Clear mark bits in all allocated heap blocks.  This invalidates
 | |
|  * the marker invariant, and sets GC_mark_state to reflect this.
 | |
|  * (This implicitly starts marking to reestablish the invariant.)
 | |
|  */
 | |
| void GC_clear_marks()
 | |
| {
 | |
|     GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
 | |
|     GC_objects_are_marked = FALSE;
 | |
|     GC_mark_state = MS_INVALID;
 | |
|     scan_ptr = 0;
 | |
| #   ifdef GATHERSTATS
 | |
| 	/* Counters reflect currently marked objects: reset here */
 | |
|         GC_composite_in_use = 0;
 | |
|         GC_atomic_in_use = 0;
 | |
| #   endif
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Initiate a garbage collection.  Initiates a full collection if the	*/
 | |
| /* mark	state is invalid.						*/
 | |
| /*ARGSUSED*/
 | |
| void GC_initiate_gc()
 | |
| {
 | |
|     if (GC_dirty_maintained) GC_read_dirty();
 | |
| #   ifdef STUBBORN_ALLOC
 | |
|     	GC_read_changed();
 | |
| #   endif
 | |
| #   ifdef CHECKSUMS
 | |
| 	{
 | |
| 	    extern void GC_check_dirty();
 | |
| 	    
 | |
| 	    if (GC_dirty_maintained) GC_check_dirty();
 | |
| 	}
 | |
| #   endif
 | |
|     GC_n_rescuing_pages = 0;
 | |
|     if (GC_mark_state == MS_NONE) {
 | |
|         GC_mark_state = MS_PUSH_RESCUERS;
 | |
|     } else if (GC_mark_state != MS_INVALID) {
 | |
|     	ABORT("unexpected state");
 | |
|     } /* else this is really a full collection, and mark	*/
 | |
|       /* bits are invalid.					*/
 | |
|     scan_ptr = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void alloc_mark_stack();
 | |
| 
 | |
| /* Perform a small amount of marking.			*/
 | |
| /* We try to touch roughly a page of memory.		*/
 | |
| /* Return TRUE if we just finished a mark phase.	*/
 | |
| /* Cold_gc_frame is an address inside a GC frame that	*/
 | |
| /* remains valid until all marking is complete.		*/
 | |
| /* A zero value indicates that it's OK to miss some	*/
 | |
| /* register values.					*/
 | |
| GC_bool GC_mark_some(cold_gc_frame)
 | |
| ptr_t cold_gc_frame;
 | |
| {
 | |
| #ifdef MSWIN32
 | |
|   /* Windows 98 appears to asynchronously create and remove writable	*/
 | |
|   /* memory mappings, for reasons we haven't yet understood.  Since	*/
 | |
|   /* we look for writable regions to determine the root set, we may	*/
 | |
|   /* try to mark from an address range that disappeared since we 	*/
 | |
|   /* started the collection.  Thus we have to recover from faults here. */
 | |
|   /* This code does not appear to be necessary for Windows 95/NT/2000.	*/ 
 | |
|   /* Note that this code should never generate an incremental GC write	*/
 | |
|   /* fault.								*/
 | |
|   __try {
 | |
| #endif
 | |
|     switch(GC_mark_state) {
 | |
|     	case MS_NONE:
 | |
|     	    return(FALSE);
 | |
|     	    
 | |
|     	case MS_PUSH_RESCUERS:
 | |
|     	    if (GC_mark_stack_top
 | |
|     	        >= GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2) {
 | |
| 		/* Go ahead and mark, even though that might cause us to */
 | |
| 		/* see more marked dirty objects later on.  Avoid this	 */
 | |
| 		/* in the future.					 */
 | |
| 		GC_mark_stack_too_small = TRUE;
 | |
|     	        MARK_FROM_MARK_STACK();
 | |
|     	        return(FALSE);
 | |
|     	    } else {
 | |
|     	        scan_ptr = GC_push_next_marked_dirty(scan_ptr);
 | |
|     	        if (scan_ptr == 0) {
 | |
| #		    ifdef CONDPRINT
 | |
| 		      if (GC_print_stats) {
 | |
| 			GC_printf1("Marked from %lu dirty pages\n",
 | |
| 				   (unsigned long)GC_n_rescuing_pages);
 | |
| 		      }
 | |
| #		    endif
 | |
|     	    	    GC_push_roots(FALSE, cold_gc_frame);
 | |
|     	    	    GC_objects_are_marked = TRUE;
 | |
|     	    	    if (GC_mark_state != MS_INVALID) {
 | |
|     	    	        GC_mark_state = MS_ROOTS_PUSHED;
 | |
|     	    	    }
 | |
|     	    	}
 | |
|     	    }
 | |
|     	    return(FALSE);
 | |
|     	
 | |
|     	case MS_PUSH_UNCOLLECTABLE:
 | |
|     	    if (GC_mark_stack_top
 | |
|     	        >= GC_mark_stack + GC_mark_stack_size/4) {
 | |
| #		ifdef PARALLEL_MARK
 | |
| 		  /* Avoid this, since we don't parallelize the marker	*/
 | |
| 		  /* here.						*/
 | |
| 		  if (GC_parallel) GC_mark_stack_too_small = TRUE;
 | |
| #		endif
 | |
|     	        MARK_FROM_MARK_STACK();
 | |
|     	        return(FALSE);
 | |
|     	    } else {
 | |
|     	        scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
 | |
|     	        if (scan_ptr == 0) {
 | |
|     	    	    GC_push_roots(TRUE, cold_gc_frame);
 | |
|     	    	    GC_objects_are_marked = TRUE;
 | |
|     	    	    if (GC_mark_state != MS_INVALID) {
 | |
|     	    	        GC_mark_state = MS_ROOTS_PUSHED;
 | |
|     	    	    }
 | |
|     	    	}
 | |
|     	    }
 | |
|     	    return(FALSE);
 | |
|     	
 | |
|     	case MS_ROOTS_PUSHED:
 | |
| #	    ifdef PARALLEL_MARK
 | |
| 	      /* In the incremental GC case, this currently doesn't	*/
 | |
| 	      /* quite do the right thing, since it runs to		*/
 | |
| 	      /* completion.  On the other hand, starting a		*/
 | |
| 	      /* parallel marker is expensive, so perhaps it is		*/
 | |
| 	      /* the right thing?					*/
 | |
| 	      /* Eventually, incremental marking should run		*/
 | |
| 	      /* asynchronously in multiple threads, without grabbing	*/
 | |
| 	      /* the allocation lock.					*/
 | |
| 	        if (GC_parallel) {
 | |
| 		  GC_do_parallel_mark();
 | |
| 		  GC_ASSERT(GC_mark_stack_top < GC_first_nonempty);
 | |
| 		  GC_mark_stack_top = GC_mark_stack - 1;
 | |
|     	          if (GC_mark_stack_too_small) {
 | |
|     	            alloc_mark_stack(2*GC_mark_stack_size);
 | |
|     	          }
 | |
| 		  if (GC_mark_state == MS_ROOTS_PUSHED) {
 | |
|     	            GC_mark_state = MS_NONE;
 | |
|     	            return(TRUE);
 | |
| 		  } else {
 | |
| 		    return(FALSE);
 | |
| 	          }
 | |
| 		}
 | |
| #	    endif
 | |
|     	    if (GC_mark_stack_top >= GC_mark_stack) {
 | |
|     	        MARK_FROM_MARK_STACK();
 | |
|     	        return(FALSE);
 | |
|     	    } else {
 | |
|     	        GC_mark_state = MS_NONE;
 | |
|     	        if (GC_mark_stack_too_small) {
 | |
|     	            alloc_mark_stack(2*GC_mark_stack_size);
 | |
|     	        }
 | |
|     	        return(TRUE);
 | |
|     	    }
 | |
|     	    
 | |
|     	case MS_INVALID:
 | |
|     	case MS_PARTIALLY_INVALID:
 | |
| 	    if (!GC_objects_are_marked) {
 | |
| 		GC_mark_state = MS_PUSH_UNCOLLECTABLE;
 | |
| 		return(FALSE);
 | |
| 	    }
 | |
|     	    if (GC_mark_stack_top >= GC_mark_stack) {
 | |
|     	        MARK_FROM_MARK_STACK();
 | |
|     	        return(FALSE);
 | |
|     	    }
 | |
|     	    if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
 | |
| 		/* About to start a heap scan for marked objects. */
 | |
| 		/* Mark stack is empty.  OK to reallocate.	  */
 | |
| 		if (GC_mark_stack_too_small) {
 | |
|     	            alloc_mark_stack(2*GC_mark_stack_size);
 | |
| 		}
 | |
| 		GC_mark_state = MS_PARTIALLY_INVALID;
 | |
|     	    }
 | |
|     	    scan_ptr = GC_push_next_marked(scan_ptr);
 | |
|     	    if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
 | |
|     	    	GC_push_roots(TRUE, cold_gc_frame);
 | |
|     	    	GC_objects_are_marked = TRUE;
 | |
|     	    	if (GC_mark_state != MS_INVALID) {
 | |
|     	    	    GC_mark_state = MS_ROOTS_PUSHED;
 | |
|     	    	}
 | |
|     	    }
 | |
|     	    return(FALSE);
 | |
|     	default:
 | |
|     	    ABORT("GC_mark_some: bad state");
 | |
|     	    return(FALSE);
 | |
|     }
 | |
| #ifdef MSWIN32
 | |
|   } __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
 | |
| 	    EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
 | |
| #   ifdef CONDPRINT
 | |
|       if (GC_print_stats) {
 | |
| 	GC_printf0("Caught ACCESS_VIOLATION in marker. "
 | |
| 		   "Memory mapping disappeared.\n");
 | |
|       }
 | |
| #   endif /* CONDPRINT */
 | |
|     /* We have bad roots on the stack.  Discard mark stack.  	*/
 | |
|     /* Rescan from marked objects.  Redetermine roots.		*/
 | |
|     GC_invalidate_mark_state();	
 | |
|     scan_ptr = 0;
 | |
|     return FALSE;
 | |
|   }
 | |
| #endif /* MSWIN32 */
 | |
| }
 | |
| 
 | |
| 
 | |
| GC_bool GC_mark_stack_empty()
 | |
| {
 | |
|     return(GC_mark_stack_top < GC_mark_stack);
 | |
| }	
 | |
| 
 | |
| #ifdef PROF_MARKER
 | |
|     word GC_prof_array[10];
 | |
| #   define PROF(n) GC_prof_array[n]++
 | |
| #else
 | |
| #   define PROF(n)
 | |
| #endif
 | |
| 
 | |
| /* Given a pointer to someplace other than a small object page or the	*/
 | |
| /* first page of a large object, either:				*/
 | |
| /*	- return a pointer to somewhere in the first page of the large	*/
 | |
| /*	  object, if current points to a large object.			*/
 | |
| /*	  In this case *hhdr is replaced with a pointer to the header	*/
 | |
| /*	  for the large object.						*/
 | |
| /*	- just return current if it does not point to a large object.	*/
 | |
| /*ARGSUSED*/
 | |
| # ifdef PRINT_BLACK_LIST
 | |
|   ptr_t GC_find_start(current, hhdr, new_hdr_p, source)
 | |
|   ptr_t source;
 | |
| # else
 | |
|   ptr_t GC_find_start(current, hhdr, new_hdr_p)
 | |
| # define source 0
 | |
| # endif
 | |
| register ptr_t current;
 | |
| register hdr *hhdr, **new_hdr_p;
 | |
| {
 | |
|     if (GC_all_interior_pointers) {
 | |
| 	if (hhdr != 0) {
 | |
| 	    register ptr_t orig = current;
 | |
| 	    
 | |
| 	    current = (ptr_t)HBLKPTR(current);
 | |
| 	    do {
 | |
| 	      current = current - HBLKSIZE*(word)hhdr;
 | |
| 	      hhdr = HDR(current);
 | |
| 	    } while(IS_FORWARDING_ADDR_OR_NIL(hhdr));
 | |
| 	    /* current points to the start of the large object */
 | |
| 	    if (hhdr -> hb_flags & IGNORE_OFF_PAGE) return(0);
 | |
| 	    if ((word *)orig - (word *)current
 | |
| 	         >= (ptrdiff_t)(hhdr->hb_sz)) {
 | |
| 	        /* Pointer past the end of the block */
 | |
| 	        return(orig);
 | |
| 	    }
 | |
| 	    *new_hdr_p = hhdr;
 | |
| 	    return(current);
 | |
| 	} else {
 | |
| 	    return(current);
 | |
|         }
 | |
|     } else {
 | |
|         return(current);
 | |
|     }
 | |
| #   undef source
 | |
| }
 | |
| 
 | |
| void GC_invalidate_mark_state()
 | |
| {
 | |
|     GC_mark_state = MS_INVALID;
 | |
|     GC_mark_stack_top = GC_mark_stack-1;
 | |
| }
 | |
| 
 | |
| mse * GC_signal_mark_stack_overflow(msp)
 | |
| mse * msp;
 | |
| {
 | |
|     GC_mark_state = MS_INVALID;
 | |
|     GC_mark_stack_too_small = TRUE;
 | |
| #   ifdef CONDPRINT
 | |
|       if (GC_print_stats) {
 | |
| 	GC_printf1("Mark stack overflow; current size = %lu entries\n",
 | |
| 	    	    GC_mark_stack_size);
 | |
|       }
 | |
| #   endif
 | |
|     return(msp - GC_MARK_STACK_DISCARDS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark objects pointed to by the regions described by
 | |
|  * mark stack entries between GC_mark_stack and GC_mark_stack_top,
 | |
|  * inclusive.  Assumes the upper limit of a mark stack entry
 | |
|  * is never 0.  A mark stack entry never has size 0.
 | |
|  * We try to traverse on the order of a hblk of memory before we return.
 | |
|  * Caller is responsible for calling this until the mark stack is empty.
 | |
|  * Note that this is the most performance critical routine in the
 | |
|  * collector.  Hence it contains all sorts of ugly hacks to speed
 | |
|  * things up.  In particular, we avoid procedure calls on the common
 | |
|  * path, we take advantage of peculiarities of the mark descriptor
 | |
|  * encoding, we optionally maintain a cache for the block address to
 | |
|  * header mapping, we prefetch when an object is "grayed", etc. 
 | |
|  */
 | |
| mse * GC_mark_from(mark_stack_top, mark_stack, mark_stack_limit)
 | |
| mse * mark_stack_top;
 | |
| mse * mark_stack;
 | |
| mse * mark_stack_limit;
 | |
| {
 | |
|   int credit = HBLKSIZE;	/* Remaining credit for marking work	*/
 | |
|   register word * current_p;	/* Pointer to current candidate ptr.	*/
 | |
|   register word current;	/* Candidate pointer.			*/
 | |
|   register word * limit;	/* (Incl) limit of current candidate 	*/
 | |
|   				/* range				*/
 | |
|   register word descr;
 | |
|   register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
 | |
|   register ptr_t least_ha = GC_least_plausible_heap_addr;
 | |
|   DECLARE_HDR_CACHE;
 | |
| 
 | |
| # define SPLIT_RANGE_WORDS 128  /* Must be power of 2.		*/
 | |
| 
 | |
|   GC_objects_are_marked = TRUE;
 | |
|   INIT_HDR_CACHE;
 | |
| # ifdef OS2 /* Use untweaked version to circumvent compiler problem */
 | |
|   while (mark_stack_top >= mark_stack && credit >= 0) {
 | |
| # else
 | |
|   while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit)
 | |
|   	>= 0) {
 | |
| # endif
 | |
|     current_p = mark_stack_top -> mse_start;
 | |
|     descr = mark_stack_top -> mse_descr;
 | |
|   retry:
 | |
|     /* current_p and descr describe the current object.		*/
 | |
|     /* *mark_stack_top is vacant.				*/
 | |
|     /* The following is 0 only for small objects described by a simple	*/
 | |
|     /* length descriptor.  For many applications this is the common	*/
 | |
|     /* case, so we try to detect it quickly.				*/
 | |
|     if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
 | |
|       word tag = descr & GC_DS_TAGS;
 | |
|       
 | |
|       switch(tag) {
 | |
|         case GC_DS_LENGTH:
 | |
|           /* Large length.					        */
 | |
|           /* Process part of the range to avoid pushing too much on the	*/
 | |
|           /* stack.							*/
 | |
| #	  ifdef PARALLEL_MARK
 | |
| #	    define SHARE_BYTES 2048
 | |
| 	    if (descr > SHARE_BYTES && GC_parallel
 | |
| 		&& mark_stack_top < mark_stack_limit - 1) {
 | |
| 	      int new_size = (descr/2) & ~(sizeof(word)-1);
 | |
| 	      GC_ASSERT(descr < GC_greatest_plausible_heap_addr
 | |
| 			        - GC_least_plausible_heap_addr);
 | |
| 	      mark_stack_top -> mse_start = current_p;
 | |
| 	      mark_stack_top -> mse_descr = new_size + sizeof(word);
 | |
| 					/* makes sure we handle 	*/
 | |
| 					/* misaligned pointers.		*/
 | |
| 	      mark_stack_top++;
 | |
| 	      current_p = (word *) ((char *)current_p + new_size);
 | |
| 	      descr -= new_size;
 | |
| 	      goto retry;
 | |
| 	    }
 | |
| #	  endif /* PARALLEL_MARK */
 | |
|           mark_stack_top -> mse_start =
 | |
|          	limit = current_p + SPLIT_RANGE_WORDS-1;
 | |
|           mark_stack_top -> mse_descr =
 | |
|           		descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
 | |
|           /* Make sure that pointers overlapping the two ranges are	*/
 | |
|           /* considered. 						*/
 | |
|           limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);
 | |
|           break;
 | |
|         case GC_DS_BITMAP:
 | |
|           mark_stack_top--;
 | |
|           descr &= ~GC_DS_TAGS;
 | |
|           credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
 | |
|           while (descr != 0) {
 | |
|             if ((signed_word)descr < 0) {
 | |
|               current = *current_p;
 | |
| 	      if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
 | |
| 		PREFETCH(current);
 | |
|                 HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
 | |
| 			      mark_stack_limit, current_p, exit1);
 | |
| 	      }
 | |
|             }
 | |
| 	    descr <<= 1;
 | |
| 	    ++ current_p;
 | |
|           }
 | |
|           continue;
 | |
|         case GC_DS_PROC:
 | |
|           mark_stack_top--;
 | |
|           credit -= GC_PROC_BYTES;
 | |
|           mark_stack_top =
 | |
|               (*PROC(descr))
 | |
|               	    (current_p, mark_stack_top,
 | |
|               	    mark_stack_limit, ENV(descr));
 | |
|           continue;
 | |
|         case GC_DS_PER_OBJECT:
 | |
| 	  if ((signed_word)descr >= 0) {
 | |
| 	    /* Descriptor is in the object.	*/
 | |
|             descr = *(word *)((ptr_t)current_p + descr - GC_DS_PER_OBJECT);
 | |
| 	  } else {
 | |
| 	    /* Descriptor is in type descriptor pointed to by first	*/
 | |
| 	    /* word in object.						*/
 | |
| 	    ptr_t type_descr = *(ptr_t *)current_p;
 | |
| 	    /* type_descr is either a valid pointer to the descriptor	*/
 | |
| 	    /* structure, or this object was on a free list.  If it 	*/
 | |
| 	    /* it was anything but the last object on the free list,	*/
 | |
| 	    /* we will misinterpret the next object on the free list as */
 | |
| 	    /* the type descriptor, and get a 0 GC descriptor, which	*/
 | |
| 	    /* is ideal.  Unfortunately, we need to check for the last	*/
 | |
| 	    /* object case explicitly.					*/
 | |
| 	    if (0 == type_descr) {
 | |
| 		/* Rarely executed.	*/
 | |
| 		mark_stack_top--;
 | |
| 		continue;
 | |
| 	    }
 | |
|             descr = *(word *)(type_descr
 | |
| 			      - (descr - (GC_DS_PER_OBJECT
 | |
| 					  - GC_INDIR_PER_OBJ_BIAS)));
 | |
| 	  }
 | |
| 	  if (0 == descr) {
 | |
| 	      /* Can happen either because we generated a 0 descriptor	*/
 | |
| 	      /* or we saw a pointer to a free object.			*/
 | |
| 	      mark_stack_top--;
 | |
| 	      continue;
 | |
| 	  }
 | |
|           goto retry;
 | |
|       }
 | |
|     } else /* Small object with length descriptor */ {
 | |
|       mark_stack_top--;
 | |
|       limit = (word *)(((ptr_t)current_p) + (word)descr);
 | |
|     }
 | |
|     /* The simple case in which we're scanning a range.	*/
 | |
|     GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
 | |
|     credit -= (ptr_t)limit - (ptr_t)current_p;
 | |
|     limit -= 1;
 | |
|     {
 | |
| #     define PREF_DIST 4
 | |
| 
 | |
| #     ifndef SMALL_CONFIG
 | |
|         word deferred;
 | |
| 
 | |
| 	/* Try to prefetch the next pointer to be examined asap.	*/
 | |
| 	/* Empirically, this also seems to help slightly without	*/
 | |
| 	/* prefetches, at least on linux/X86.  Presumably this loop 	*/
 | |
| 	/* ends up with less register pressure, and gcc thus ends up 	*/
 | |
| 	/* generating slightly better code.  Overall gcc code quality	*/
 | |
| 	/* for this loop is still not great.				*/
 | |
| 	for(;;) {
 | |
| 	  PREFETCH((ptr_t)limit - PREF_DIST*CACHE_LINE_SIZE);
 | |
| 	  GC_ASSERT(limit >= current_p);
 | |
| 	  deferred = *limit;
 | |
| 	  limit = (word *)((char *)limit - ALIGNMENT);
 | |
| 	  if ((ptr_t)deferred >= least_ha && (ptr_t)deferred <  greatest_ha) {
 | |
| 	    PREFETCH(deferred);
 | |
| 	    break;
 | |
| 	  }
 | |
| 	  if (current_p > limit) goto next_object;
 | |
| 	  /* Unroll once, so we don't do too many of the prefetches 	*/
 | |
| 	  /* based on limit.						*/
 | |
| 	  deferred = *limit;
 | |
| 	  limit = (word *)((char *)limit - ALIGNMENT);
 | |
| 	  if ((ptr_t)deferred >= least_ha && (ptr_t)deferred <  greatest_ha) {
 | |
| 	    PREFETCH(deferred);
 | |
| 	    break;
 | |
| 	  }
 | |
| 	  if (current_p > limit) goto next_object;
 | |
| 	}
 | |
| #     endif
 | |
| 
 | |
|       while (current_p <= limit) {
 | |
| 	/* Empirically, unrolling this loop doesn't help a lot.	*/
 | |
| 	/* Since HC_PUSH_CONTENTS expands to a lot of code,	*/
 | |
| 	/* we don't.						*/
 | |
|         current = *current_p;
 | |
|         PREFETCH((ptr_t)current_p + PREF_DIST*CACHE_LINE_SIZE);
 | |
|         if ((ptr_t)current >= least_ha && (ptr_t)current <  greatest_ha) {
 | |
|   	  /* Prefetch the contents of the object we just pushed.  It's	*/
 | |
|   	  /* likely we will need them soon.				*/
 | |
|   	  PREFETCH(current);
 | |
|           HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
 | |
|   		           mark_stack_limit, current_p, exit2);
 | |
|         }
 | |
|         current_p = (word *)((char *)current_p + ALIGNMENT);
 | |
|       }
 | |
| 
 | |
| #     ifndef SMALL_CONFIG
 | |
| 	/* We still need to mark the entry we previously prefetched.	*/
 | |
| 	/* We alrady know that it passes the preliminary pointer	*/
 | |
| 	/* validity test.						*/
 | |
|         HC_PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
 | |
|   		         mark_stack_limit, current_p, exit4);
 | |
| 	next_object:;
 | |
| #     endif
 | |
|     }
 | |
|   }
 | |
|   return mark_stack_top;
 | |
| }
 | |
| 
 | |
| #ifdef PARALLEL_MARK
 | |
| 
 | |
| /* We assume we have an ANSI C Compiler.	*/
 | |
| GC_bool GC_help_wanted = FALSE;
 | |
| unsigned GC_helper_count = 0;
 | |
| unsigned GC_active_count = 0;
 | |
| mse * VOLATILE GC_first_nonempty;
 | |
| word GC_mark_no = 0;
 | |
| 
 | |
| #define LOCAL_MARK_STACK_SIZE HBLKSIZE
 | |
| 	/* Under normal circumstances, this is big enough to guarantee	*/
 | |
| 	/* We don't overflow half of it in a single call to 		*/
 | |
| 	/* GC_mark_from.						*/
 | |
| 
 | |
| 
 | |
| /* Steal mark stack entries starting at mse low into mark stack local	*/
 | |
| /* until we either steal mse high, or we have max entries.		*/
 | |
| /* Return a pointer to the top of the local mark stack.		        */
 | |
| /* *next is replaced by a pointer to the next unscanned mark stack	*/
 | |
| /* entry.								*/
 | |
| mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
 | |
| 			  unsigned max, mse **next)
 | |
| {
 | |
|     mse *p;
 | |
|     mse *top = local - 1;
 | |
|     unsigned i = 0;
 | |
| 
 | |
|     GC_ASSERT(high >= low-1 && high - low + 1 <= GC_mark_stack_size);
 | |
|     for (p = low; p <= high && i <= max; ++p) {
 | |
| 	word descr = *(volatile word *) &(p -> mse_descr);
 | |
| 	if (descr != 0) {
 | |
| 	    *(volatile word *) &(p -> mse_descr) = 0;
 | |
| 	    ++top;
 | |
| 	    top -> mse_descr = descr;
 | |
| 	    top -> mse_start = p -> mse_start;
 | |
| 	    GC_ASSERT(  top -> mse_descr & GC_DS_TAGS != GC_DS_LENGTH || 
 | |
| 			top -> mse_descr < GC_greatest_plausible_heap_addr
 | |
| 			                   - GC_least_plausible_heap_addr);
 | |
| 	    /* There is no synchronization here.  We assume that at	*/
 | |
| 	    /* least one thread will see the original descriptor.	*/
 | |
| 	    /* Otherwise we need a barrier.				*/
 | |
| 	    /* More than one thread may get this entry, but that's only */
 | |
| 	    /* a minor performance problem.				*/
 | |
| 	    /* If this is a big object, count it as			*/
 | |
| 	    /* size/256 + 1 objects.					*/
 | |
| 	    ++i;
 | |
| 	    if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (descr >> 8);
 | |
| 	}
 | |
|     }
 | |
|     *next = p;
 | |
|     return top;
 | |
| }
 | |
| 
 | |
| /* Copy back a local mark stack.	*/
 | |
| /* low and high are inclusive bounds.	*/
 | |
| void GC_return_mark_stack(mse * low, mse * high)
 | |
| {
 | |
|     mse * my_top;
 | |
|     mse * my_start;
 | |
|     size_t stack_size;
 | |
| 
 | |
|     if (high < low) return;
 | |
|     stack_size = high - low + 1;
 | |
|     GC_acquire_mark_lock();
 | |
|     my_top = GC_mark_stack_top;
 | |
|     my_start = my_top + 1;
 | |
|     if (my_start - GC_mark_stack + stack_size > GC_mark_stack_size) {
 | |
| #     ifdef CONDPRINT
 | |
| 	if (GC_print_stats) {
 | |
| 	  GC_printf0("No room to copy back mark stack.");
 | |
| 	}
 | |
| #     endif
 | |
|       GC_mark_state = MS_INVALID;
 | |
|       GC_mark_stack_too_small = TRUE;
 | |
|       /* We drop the local mark stack.  We'll fix things later.	*/
 | |
|     } else {
 | |
|       BCOPY(low, my_start, stack_size * sizeof(mse));
 | |
|       GC_ASSERT(GC_mark_stack_top = my_top);
 | |
| #     if !defined(IA64) && !defined(HP_PA)
 | |
|         GC_memory_write_barrier();
 | |
| #     endif
 | |
| 	/* On IA64, the volatile write acts as a release barrier. */
 | |
|       GC_mark_stack_top = my_top + stack_size;
 | |
|     }
 | |
|     GC_release_mark_lock();
 | |
|     GC_notify_all_marker();
 | |
| }
 | |
| 
 | |
| /* Mark from the local mark stack.		*/
 | |
| /* On return, the local mark stack is empty.	*/
 | |
| /* But this may be achieved by copying the	*/
 | |
| /* local mark stack back into the global one.	*/
 | |
| void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
 | |
| {
 | |
|     unsigned n;
 | |
| #   define N_LOCAL_ITERS 1
 | |
| 
 | |
| #   ifdef GC_ASSERTIONS
 | |
|       /* Make sure we don't hold mark lock. */
 | |
| 	GC_acquire_mark_lock();
 | |
| 	GC_release_mark_lock();
 | |
| #   endif
 | |
|     for (;;) {
 | |
|         for (n = 0; n < N_LOCAL_ITERS; ++n) {
 | |
| 	    local_top = GC_mark_from(local_top, local_mark_stack,
 | |
| 				     local_mark_stack + LOCAL_MARK_STACK_SIZE);
 | |
| 	    if (local_top < local_mark_stack) return;
 | |
| 	    if (local_top - local_mark_stack >= LOCAL_MARK_STACK_SIZE/2) {
 | |
| 	 	GC_return_mark_stack(local_mark_stack, local_top);
 | |
| 		return;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (GC_mark_stack_top < GC_first_nonempty &&
 | |
| 	    GC_active_count < GC_helper_count
 | |
| 	    && local_top > local_mark_stack + 1) {
 | |
| 	    /* Try to share the load, since the main stack is empty,	*/
 | |
| 	    /* and helper threads are waiting for a refill.		*/
 | |
| 	    /* The entries near the bottom of the stack are likely	*/
 | |
| 	    /* to require more work.  Thus we return those, eventhough	*/
 | |
| 	    /* it's harder.						*/
 | |
| 	    mse * p;
 | |
|  	    mse * new_bottom = local_mark_stack
 | |
| 				+ (local_top - local_mark_stack)/2;
 | |
| 	    GC_ASSERT(new_bottom > local_mark_stack
 | |
| 		      && new_bottom < local_top);
 | |
| 	    GC_return_mark_stack(local_mark_stack, new_bottom - 1);
 | |
| 	    memmove(local_mark_stack, new_bottom,
 | |
| 		    (local_top - new_bottom + 1) * sizeof(mse));
 | |
| 	    local_top -= (new_bottom - local_mark_stack);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define ENTRIES_TO_GET 5
 | |
| 
 | |
| long GC_markers = 2;		/* Normally changed by thread-library-	*/
 | |
| 				/* -specific code.			*/
 | |
| 
 | |
| /* Mark using the local mark stack until the global mark stack is empty	*/
 | |
| /* and there are no active workers. Update GC_first_nonempty to reflect	*/
 | |
| /* progress.								*/
 | |
| /* Caller does not hold mark lock.					*/
 | |
| /* Caller has already incremented GC_helper_count.  We decrement it,	*/
 | |
| /* and maintain GC_active_count.					*/
 | |
| void GC_mark_local(mse *local_mark_stack, int id)
 | |
| {
 | |
|     mse * my_first_nonempty;
 | |
| 
 | |
|     GC_acquire_mark_lock();
 | |
|     GC_active_count++;
 | |
|     my_first_nonempty = GC_first_nonempty;
 | |
|     GC_ASSERT(GC_first_nonempty >= GC_mark_stack && 
 | |
| 	      GC_first_nonempty <= GC_mark_stack_top + 1);
 | |
| #   ifdef PRINTSTATS
 | |
| 	GC_printf1("Starting mark helper %lu\n", (unsigned long)id);
 | |
| #   endif
 | |
|     GC_release_mark_lock();
 | |
|     for (;;) {
 | |
|   	size_t n_on_stack;
 | |
|         size_t n_to_get;
 | |
| 	mse *next;
 | |
| 	mse * my_top;
 | |
| 	mse * local_top;
 | |
|         mse * global_first_nonempty = GC_first_nonempty;
 | |
| 
 | |
|     	GC_ASSERT(my_first_nonempty >= GC_mark_stack && 
 | |
| 		  my_first_nonempty <= GC_mark_stack_top + 1);
 | |
|     	GC_ASSERT(global_first_nonempty >= GC_mark_stack && 
 | |
| 		  global_first_nonempty <= GC_mark_stack_top + 1);
 | |
| 	if (my_first_nonempty < global_first_nonempty) {
 | |
| 	    my_first_nonempty = global_first_nonempty;
 | |
|         } else if (global_first_nonempty < my_first_nonempty) {
 | |
| 	    GC_compare_and_exchange((word *)(&GC_first_nonempty), 
 | |
| 				   (word) global_first_nonempty,
 | |
| 				   (word) my_first_nonempty);
 | |
| 	    /* If this fails, we just go ahead, without updating	*/
 | |
| 	    /* GC_first_nonempty.					*/
 | |
| 	}
 | |
| 	/* Perhaps we should also update GC_first_nonempty, if it */
 | |
| 	/* is less.  But that would require using atomic updates. */
 | |
| 	my_top = GC_mark_stack_top;
 | |
| 	n_on_stack = my_top - my_first_nonempty + 1;
 | |
|         if (0 == n_on_stack) {
 | |
| 	    GC_acquire_mark_lock();
 | |
|             my_top = GC_mark_stack_top;
 | |
|             n_on_stack = my_top - my_first_nonempty + 1;
 | |
| 	    if (0 == n_on_stack) {
 | |
| 		GC_active_count--;
 | |
| 		GC_ASSERT(GC_active_count <= GC_helper_count);
 | |
| 		/* Other markers may redeposit objects	*/
 | |
| 		/* on the stack.				*/
 | |
| 		if (0 == GC_active_count) GC_notify_all_marker();
 | |
| 		while (GC_active_count > 0
 | |
| 		       && GC_first_nonempty > GC_mark_stack_top) {
 | |
| 		    /* We will be notified if either GC_active_count	*/
 | |
| 		    /* reaches zero, or if more objects are pushed on	*/
 | |
| 		    /* the global mark stack.				*/
 | |
| 		    GC_wait_marker();
 | |
| 		}
 | |
| 		if (GC_active_count == 0 &&
 | |
| 		    GC_first_nonempty > GC_mark_stack_top) { 
 | |
| 		    GC_bool need_to_notify = FALSE;
 | |
| 		    /* The above conditions can't be falsified while we	*/
 | |
| 		    /* hold the mark lock, since neither 		*/
 | |
| 		    /* GC_active_count nor GC_mark_stack_top can	*/
 | |
| 		    /* change.  GC_first_nonempty can only be		*/
 | |
| 		    /* incremented asynchronously.  Thus we know that	*/
 | |
| 		    /* both conditions actually held simultaneously.	*/
 | |
| 		    GC_helper_count--;
 | |
| 		    if (0 == GC_helper_count) need_to_notify = TRUE;
 | |
| #		    ifdef PRINTSTATS
 | |
| 		      GC_printf1(
 | |
| 		        "Finished mark helper %lu\n", (unsigned long)id);
 | |
| #   		    endif
 | |
| 		    GC_release_mark_lock();
 | |
| 		    if (need_to_notify) GC_notify_all_marker();
 | |
| 		    return;
 | |
| 		}
 | |
| 		/* else there's something on the stack again, or	*/
 | |
| 		/* another helper may push something.			*/
 | |
| 		GC_active_count++;
 | |
| 	        GC_ASSERT(GC_active_count > 0);
 | |
| 		GC_release_mark_lock();
 | |
| 		continue;
 | |
| 	    } else {
 | |
| 		GC_release_mark_lock();
 | |
| 	    }
 | |
| 	}
 | |
| 	n_to_get = ENTRIES_TO_GET;
 | |
| 	if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
 | |
| 	local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
 | |
| 					local_mark_stack, n_to_get,
 | |
| 				        &my_first_nonempty);
 | |
|         GC_ASSERT(my_first_nonempty >= GC_mark_stack && 
 | |
| 	          my_first_nonempty <= GC_mark_stack_top + 1);
 | |
| 	GC_do_local_mark(local_mark_stack, local_top);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Perform Parallel mark.			*/
 | |
| /* We hold the GC lock, not the mark lock.	*/
 | |
| /* Currently runs until the mark stack is	*/
 | |
| /* empty.					*/
 | |
| void GC_do_parallel_mark()
 | |
| {
 | |
|     mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
 | |
|     mse * local_top;
 | |
|     mse * my_top;
 | |
| 
 | |
|     GC_acquire_mark_lock();
 | |
|     GC_ASSERT(I_HOLD_LOCK());
 | |
|     /* This could be a GC_ASSERT, but it seems safer to keep it on	*/
 | |
|     /* all the time, especially since it's cheap.			*/
 | |
|     if (GC_help_wanted || GC_active_count != 0 || GC_helper_count != 0)
 | |
| 	ABORT("Tried to start parallel mark in bad state");
 | |
| #   ifdef PRINTSTATS
 | |
| 	GC_printf1("Starting marking for mark phase number %lu\n",
 | |
| 		   (unsigned long)GC_mark_no);
 | |
| #   endif
 | |
|     GC_first_nonempty = GC_mark_stack;
 | |
|     GC_active_count = 0;
 | |
|     GC_helper_count = 1;
 | |
|     GC_help_wanted = TRUE;
 | |
|     GC_release_mark_lock();
 | |
|     GC_notify_all_marker();
 | |
| 	/* Wake up potential helpers.	*/
 | |
|     GC_mark_local(local_mark_stack, 0);
 | |
|     GC_acquire_mark_lock();
 | |
|     GC_help_wanted = FALSE;
 | |
|     /* Done; clean up.	*/
 | |
|     while (GC_helper_count > 0) GC_wait_marker();
 | |
|     /* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
 | |
| #   ifdef PRINTSTATS
 | |
| 	GC_printf1(
 | |
| 	    "Finished marking for mark phase number %lu\n",
 | |
| 	    (unsigned long)GC_mark_no);
 | |
| #   endif
 | |
|     GC_mark_no++;
 | |
|     GC_release_mark_lock();
 | |
|     GC_notify_all_marker();
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Try to help out the marker, if it's running.	        */
 | |
| /* We do not hold the GC lock, but the requestor does.	*/
 | |
| void GC_help_marker(word my_mark_no)
 | |
| {
 | |
|     mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
 | |
|     unsigned my_id;
 | |
|     mse * my_first_nonempty;
 | |
| 
 | |
|     if (!GC_parallel) return;
 | |
|     GC_acquire_mark_lock();
 | |
|     while (GC_mark_no < my_mark_no
 | |
|            || !GC_help_wanted && GC_mark_no == my_mark_no) {
 | |
|       GC_wait_marker();
 | |
|     }
 | |
|     my_id = GC_helper_count;
 | |
|     if (GC_mark_no != my_mark_no || my_id >= GC_markers) {
 | |
|       /* Second test is useful only if original threads can also	*/
 | |
|       /* act as helpers.  Under Linux they can't.			*/
 | |
|       GC_release_mark_lock();
 | |
|       return;
 | |
|     }
 | |
|     GC_helper_count = my_id + 1;
 | |
|     GC_release_mark_lock();
 | |
|     GC_mark_local(local_mark_stack, my_id);
 | |
|     /* GC_mark_local decrements GC_helper_count. */
 | |
| }
 | |
| 
 | |
| #endif /* PARALLEL_MARK */
 | |
| 
 | |
| /* Allocate or reallocate space for mark stack of size s words  */
 | |
| /* May silently fail.						*/
 | |
| static void alloc_mark_stack(n)
 | |
| word n;
 | |
| {
 | |
|     mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
 | |
|     
 | |
|     GC_mark_stack_too_small = FALSE;
 | |
|     if (GC_mark_stack_size != 0) {
 | |
|         if (new_stack != 0) {
 | |
|           word displ = (word)GC_mark_stack & (GC_page_size - 1);
 | |
|           signed_word size = GC_mark_stack_size * sizeof(struct GC_ms_entry);
 | |
|           
 | |
|           /* Recycle old space */
 | |
| 	      if (0 != displ) displ = GC_page_size - displ;
 | |
| 	      size = (size - displ) & ~(GC_page_size - 1);
 | |
| 	      if (size > 0) {
 | |
| 	        GC_add_to_heap((struct hblk *)
 | |
| 	      			((word)GC_mark_stack + displ), (word)size);
 | |
| 	      }
 | |
|           GC_mark_stack = new_stack;
 | |
|           GC_mark_stack_size = n;
 | |
| 	  GC_mark_stack_limit = new_stack + n;
 | |
| #	  ifdef CONDPRINT
 | |
| 	    if (GC_print_stats) {
 | |
| 	      GC_printf1("Grew mark stack to %lu frames\n",
 | |
| 		    	 (unsigned long) GC_mark_stack_size);
 | |
| 	    }
 | |
| #	  endif
 | |
|         } else {
 | |
| #	  ifdef CONDPRINT
 | |
| 	    if (GC_print_stats) {
 | |
| 	      GC_printf1("Failed to grow mark stack to %lu frames\n",
 | |
| 		    	 (unsigned long) n);
 | |
| 	    }
 | |
| #	  endif
 | |
|         }
 | |
|     } else {
 | |
|         if (new_stack == 0) {
 | |
|             GC_err_printf0("No space for mark stack\n");
 | |
|             EXIT();
 | |
|         }
 | |
|         GC_mark_stack = new_stack;
 | |
|         GC_mark_stack_size = n;
 | |
| 	GC_mark_stack_limit = new_stack + n;
 | |
|     }
 | |
|     GC_mark_stack_top = GC_mark_stack-1;
 | |
| }
 | |
| 
 | |
| void GC_mark_init()
 | |
| {
 | |
|     alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Push all locations between b and t onto the mark stack.
 | |
|  * b is the first location to be checked. t is one past the last
 | |
|  * location to be checked.
 | |
|  * Should only be used if there is no possibility of mark stack
 | |
|  * overflow.
 | |
|  */
 | |
| void GC_push_all(bottom, top)
 | |
| ptr_t bottom;
 | |
| ptr_t top;
 | |
| {
 | |
|     register word length;
 | |
|     
 | |
|     bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
 | |
|     top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
 | |
|     if (top == 0 || bottom == top) return;
 | |
|     GC_mark_stack_top++;
 | |
|     if (GC_mark_stack_top >= GC_mark_stack_limit) {
 | |
| 	ABORT("unexpected mark stack overflow");
 | |
|     }
 | |
|     length = top - bottom;
 | |
| #   if GC_DS_TAGS > ALIGNMENT - 1
 | |
| 	length += GC_DS_TAGS;
 | |
| 	length &= ~GC_DS_TAGS;
 | |
| #   endif
 | |
|     GC_mark_stack_top -> mse_start = (word *)bottom;
 | |
|     GC_mark_stack_top -> mse_descr = length;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
 | |
|  * We use push_fn to actually push the block.
 | |
|  * Used both to selectively push dirty pages, or to push a block
 | |
|  * in piecemeal fashion, to allow for more marking concurrency.
 | |
|  * Will not overflow mark stack if push_fn pushes a small fixed number
 | |
|  * of entries.  (This is invoked only if push_fn pushes a single entry,
 | |
|  * or if it marks each object before pushing it, thus ensuring progress
 | |
|  * in the event of a stack overflow.)
 | |
|  */
 | |
| void GC_push_selected(bottom, top, dirty_fn, push_fn)
 | |
| ptr_t bottom;
 | |
| ptr_t top;
 | |
| int (*dirty_fn) GC_PROTO((struct hblk * h));
 | |
| void (*push_fn) GC_PROTO((ptr_t bottom, ptr_t top));
 | |
| {
 | |
|     register struct hblk * h;
 | |
| 
 | |
|     bottom = (ptr_t)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
 | |
|     top = (ptr_t)(((long) top) & ~(ALIGNMENT-1));
 | |
| 
 | |
|     if (top == 0 || bottom == top) return;
 | |
|     h = HBLKPTR(bottom + HBLKSIZE);
 | |
|     if (top <= (ptr_t) h) {
 | |
|   	if ((*dirty_fn)(h-1)) {
 | |
| 	    (*push_fn)(bottom, top);
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
|     if ((*dirty_fn)(h-1)) {
 | |
|         (*push_fn)(bottom, (ptr_t)h);
 | |
|     }
 | |
|     while ((ptr_t)(h+1) <= top) {
 | |
| 	if ((*dirty_fn)(h)) {
 | |
| 	    if ((word)(GC_mark_stack_top - GC_mark_stack)
 | |
| 		> 3 * GC_mark_stack_size / 4) {
 | |
| 	 	/* Danger of mark stack overflow */
 | |
| 		(*push_fn)((ptr_t)h, top);
 | |
| 		return;
 | |
| 	    } else {
 | |
| 		(*push_fn)((ptr_t)h, (ptr_t)(h+1));
 | |
| 	    }
 | |
| 	}
 | |
| 	h++;
 | |
|     }
 | |
|     if ((ptr_t)h != top) {
 | |
| 	if ((*dirty_fn)(h)) {
 | |
|             (*push_fn)((ptr_t)h, top);
 | |
|         }
 | |
|     }
 | |
|     if (GC_mark_stack_top >= GC_mark_stack_limit) {
 | |
|         ABORT("unexpected mark stack overflow");
 | |
|     }
 | |
| }
 | |
| 
 | |
| # ifndef SMALL_CONFIG
 | |
| 
 | |
| #ifdef PARALLEL_MARK
 | |
|     /* Break up root sections into page size chunks to better spread 	*/
 | |
|     /* out work.							*/
 | |
|     GC_bool GC_true_func(struct hblk *h) { return TRUE; }
 | |
| #   define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
 | |
| #else
 | |
| #   define GC_PUSH_ALL(b,t) GC_push_all(b,t);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| void GC_push_conditional(bottom, top, all)
 | |
| ptr_t bottom;
 | |
| ptr_t top;
 | |
| int all;
 | |
| {
 | |
|     if (all) {
 | |
|       if (GC_dirty_maintained) {
 | |
| #	ifdef PROC_VDB
 | |
| 	    /* Pages that were never dirtied cannot contain pointers	*/
 | |
| 	    GC_push_selected(bottom, top, GC_page_was_ever_dirty, GC_push_all);
 | |
| #	else
 | |
| 	    GC_push_all(bottom, top);
 | |
| #	endif
 | |
|       } else {
 | |
|       	GC_push_all(bottom, top);
 | |
|       }
 | |
|     } else {
 | |
| 	GC_push_selected(bottom, top, GC_page_was_dirty, GC_push_all);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| # if defined(MSWIN32) || defined(MSWINCE)
 | |
|   void __cdecl GC_push_one(p)
 | |
| # else
 | |
|   void GC_push_one(p)
 | |
| # endif
 | |
| word p;
 | |
| {
 | |
|     GC_PUSH_ONE_STACK(p, MARKED_FROM_REGISTER);
 | |
| }
 | |
| 
 | |
| struct GC_ms_entry *GC_mark_and_push(obj, mark_stack_ptr, mark_stack_limit, src)
 | |
| GC_PTR obj;
 | |
| struct GC_ms_entry * mark_stack_ptr;
 | |
| struct GC_ms_entry * mark_stack_limit;
 | |
| GC_PTR *src;
 | |
| {
 | |
|    PREFETCH(obj);
 | |
|    PUSH_CONTENTS(obj, mark_stack_ptr /* modified */, mark_stack_limit, src,
 | |
| 		 was_marked /* internally generated exit label */);
 | |
|    return mark_stack_ptr;
 | |
| }
 | |
| 
 | |
| # ifdef __STDC__
 | |
| #   define BASE(p) (word)GC_base((void *)(p))
 | |
| # else
 | |
| #   define BASE(p) (word)GC_base((char *)(p))
 | |
| # endif
 | |
| 
 | |
| /* Mark and push (i.e. gray) a single object p onto the main	*/
 | |
| /* mark stack.  Consider p to be valid if it is an interior	*/
 | |
| /* pointer.							*/
 | |
| /* The object p has passed a preliminary pointer validity	*/
 | |
| /* test, but we do not definitely know whether it is valid.	*/
 | |
| /* Mark bits are NOT atomically updated.  Thus this must be the	*/
 | |
| /* only thread setting them.					*/
 | |
| # if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
 | |
|     void GC_mark_and_push_stack(p, source)
 | |
|     ptr_t source;
 | |
| # else
 | |
|     void GC_mark_and_push_stack(p)
 | |
| #   define source 0
 | |
| # endif
 | |
| register word p;
 | |
| {
 | |
|     register word r;
 | |
|     register hdr * hhdr; 
 | |
|     register int displ;
 | |
|   
 | |
|     GET_HDR(p, hhdr);
 | |
|     if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
 | |
|         if (hhdr != 0) {
 | |
|           r = BASE(p);
 | |
| 	  hhdr = HDR(r);
 | |
| 	  displ = BYTES_TO_WORDS(HBLKDISPL(r));
 | |
| 	}
 | |
|     } else {
 | |
|         register map_entry_type map_entry;
 | |
|         
 | |
|         displ = HBLKDISPL(p);
 | |
|         map_entry = MAP_ENTRY((hhdr -> hb_map), displ);
 | |
|         if (map_entry >= MAX_OFFSET) {
 | |
|           if (map_entry == OFFSET_TOO_BIG || !GC_all_interior_pointers) {
 | |
|               r = BASE(p);
 | |
| 	      displ = BYTES_TO_WORDS(HBLKDISPL(r));
 | |
| 	      if (r == 0) hhdr = 0;
 | |
|           } else {
 | |
| 	      /* Offset invalid, but map reflects interior pointers 	*/
 | |
|               hhdr = 0;
 | |
|           }
 | |
|         } else {
 | |
|           displ = BYTES_TO_WORDS(displ);
 | |
|           displ -= map_entry;
 | |
|           r = (word)((word *)(HBLKPTR(p)) + displ);
 | |
|         }
 | |
|     }
 | |
|     /* If hhdr != 0 then r == GC_base(p), only we did it faster. */
 | |
|     /* displ is the word index within the block.		 */
 | |
|     if (hhdr == 0) {
 | |
| #	ifdef PRINT_BLACK_LIST
 | |
| 	  GC_add_to_black_list_stack(p, source);
 | |
| #	else
 | |
| 	  GC_add_to_black_list_stack(p);
 | |
| #	endif
 | |
| #	undef source  /* In case we had to define it. */
 | |
|     } else {
 | |
| 	if (!mark_bit_from_hdr(hhdr, displ)) {
 | |
| 	    set_mark_bit_from_hdr(hhdr, displ);
 | |
|  	    GC_STORE_BACK_PTR(source, (ptr_t)r);
 | |
| 	    PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,
 | |
| 	             GC_mark_stack_limit);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| # ifdef TRACE_BUF
 | |
| 
 | |
| # define TRACE_ENTRIES 1000
 | |
| 
 | |
| struct trace_entry {
 | |
|     char * kind;
 | |
|     word gc_no;
 | |
|     word words_allocd;
 | |
|     word arg1;
 | |
|     word arg2;
 | |
| } GC_trace_buf[TRACE_ENTRIES];
 | |
| 
 | |
| int GC_trace_buf_ptr = 0;
 | |
| 
 | |
| void GC_add_trace_entry(char *kind, word arg1, word arg2)
 | |
| {
 | |
|     GC_trace_buf[GC_trace_buf_ptr].kind = kind;
 | |
|     GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
 | |
|     GC_trace_buf[GC_trace_buf_ptr].words_allocd = GC_words_allocd;
 | |
|     GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
 | |
|     GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
 | |
|     GC_trace_buf_ptr++;
 | |
|     if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
 | |
| }
 | |
| 
 | |
| void GC_print_trace(word gc_no, GC_bool lock)
 | |
| {
 | |
|     int i;
 | |
|     struct trace_entry *p;
 | |
|     
 | |
|     if (lock) LOCK();
 | |
|     for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
 | |
|     	if (i < 0) i = TRACE_ENTRIES-1;
 | |
|     	p = GC_trace_buf + i;
 | |
|     	if (p -> gc_no < gc_no || p -> kind == 0) return;
 | |
|     	printf("Trace:%s (gc:%d,words:%d) 0x%X, 0x%X\n",
 | |
|     		p -> kind, p -> gc_no, p -> words_allocd,
 | |
|     		(p -> arg1) ^ 0x80000000, (p -> arg2) ^ 0x80000000);
 | |
|     }
 | |
|     printf("Trace incomplete\n");
 | |
|     if (lock) UNLOCK();
 | |
| }
 | |
| 
 | |
| # endif /* TRACE_BUF */
 | |
| 
 | |
| /*
 | |
|  * A version of GC_push_all that treats all interior pointers as valid
 | |
|  * and scans the entire region immediately, in case the contents
 | |
|  * change.
 | |
|  */
 | |
| void GC_push_all_eager(bottom, top)
 | |
| ptr_t bottom;
 | |
| ptr_t top;
 | |
| {
 | |
|     word * b = (word *)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
 | |
|     word * t = (word *)(((long) top) & ~(ALIGNMENT-1));
 | |
|     register word *p;
 | |
|     register word q;
 | |
|     register word *lim;
 | |
|     register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
 | |
|     register ptr_t least_ha = GC_least_plausible_heap_addr;
 | |
| #   define GC_greatest_plausible_heap_addr greatest_ha
 | |
| #   define GC_least_plausible_heap_addr least_ha
 | |
| 
 | |
|     if (top == 0) return;
 | |
|     /* check all pointers in range and put in push if they appear */
 | |
|     /* to be valid.						  */
 | |
|       lim = t - 1 /* longword */;
 | |
|       for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {
 | |
| 	q = *p;
 | |
| 	GC_PUSH_ONE_STACK(q, p);
 | |
|       }
 | |
| #   undef GC_greatest_plausible_heap_addr
 | |
| #   undef GC_least_plausible_heap_addr
 | |
| }
 | |
| 
 | |
| #ifndef THREADS
 | |
| /*
 | |
|  * A version of GC_push_all that treats all interior pointers as valid
 | |
|  * and scans part of the area immediately, to make sure that saved
 | |
|  * register values are not lost.
 | |
|  * Cold_gc_frame delimits the stack section that must be scanned
 | |
|  * eagerly.  A zero value indicates that no eager scanning is needed.
 | |
|  */
 | |
| void GC_push_all_stack_partially_eager(bottom, top, cold_gc_frame)
 | |
| ptr_t bottom;
 | |
| ptr_t top;
 | |
| ptr_t cold_gc_frame;
 | |
| {
 | |
|   if (GC_all_interior_pointers) {
 | |
| #   define EAGER_BYTES 1024
 | |
|     /* Push the hot end of the stack eagerly, so that register values   */
 | |
|     /* saved inside GC frames are marked before they disappear.		*/
 | |
|     /* The rest of the marking can be deferred until later.		*/
 | |
|     if (0 == cold_gc_frame) {
 | |
| 	GC_push_all_stack(bottom, top);
 | |
| 	return;
 | |
|     }
 | |
| #   ifdef STACK_GROWS_DOWN
 | |
| 	GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
 | |
| 	GC_push_all_eager(bottom, cold_gc_frame);
 | |
| #   else /* STACK_GROWS_UP */
 | |
| 	GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
 | |
| 	GC_push_all_eager(cold_gc_frame, top);
 | |
| #   endif /* STACK_GROWS_UP */
 | |
|   } else {
 | |
|     GC_push_all_eager(bottom, top);
 | |
|   }
 | |
| # ifdef TRACE_BUF
 | |
|       GC_add_trace_entry("GC_push_all_stack", bottom, top);
 | |
| # endif
 | |
| }
 | |
| #endif /* !THREADS */
 | |
| 
 | |
| void GC_push_all_stack(bottom, top)
 | |
| ptr_t bottom;
 | |
| ptr_t top;
 | |
| {
 | |
|   if (GC_all_interior_pointers) {
 | |
|     GC_push_all(bottom, top);
 | |
|   } else {
 | |
|     GC_push_all_eager(bottom, top);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 | |
| /* Push all objects reachable from marked objects in the given block */
 | |
| /* of size 1 objects.						     */
 | |
| void GC_push_marked1(h, hhdr)
 | |
| struct hblk *h;
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p;
 | |
|     word *plim;
 | |
|     register int i;
 | |
|     register word q;
 | |
|     register word mark_word;
 | |
|     register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
 | |
|     register ptr_t least_ha = GC_least_plausible_heap_addr;
 | |
|     register mse * mark_stack_top = GC_mark_stack_top;
 | |
|     register mse * mark_stack_limit = GC_mark_stack_limit;
 | |
| #   define GC_mark_stack_top mark_stack_top
 | |
| #   define GC_mark_stack_limit mark_stack_limit
 | |
| #   define GC_greatest_plausible_heap_addr greatest_ha
 | |
| #   define GC_least_plausible_heap_addr least_ha
 | |
|     
 | |
|     p = (word *)(h->hb_body);
 | |
|     plim = (word *)(((word)h) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    i = 0;
 | |
| 	    while(mark_word != 0) {
 | |
| 	      if (mark_word & 1) {
 | |
| 	          q = p[i];
 | |
| 	          GC_PUSH_ONE_HEAP(q, p + i);
 | |
| 	      }
 | |
| 	      i++;
 | |
| 	      mark_word >>= 1;
 | |
| 	    }
 | |
| 	    p += WORDSZ;
 | |
| 	}
 | |
| #   undef GC_greatest_plausible_heap_addr
 | |
| #   undef GC_least_plausible_heap_addr        
 | |
| #   undef GC_mark_stack_top
 | |
| #   undef GC_mark_stack_limit
 | |
|     GC_mark_stack_top = mark_stack_top;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef UNALIGNED
 | |
| 
 | |
| /* Push all objects reachable from marked objects in the given block */
 | |
| /* of size 2 objects.						     */
 | |
| void GC_push_marked2(h, hhdr)
 | |
| struct hblk *h;
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p;
 | |
|     word *plim;
 | |
|     register int i;
 | |
|     register word q;
 | |
|     register word mark_word;
 | |
|     register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
 | |
|     register ptr_t least_ha = GC_least_plausible_heap_addr;
 | |
|     register mse * mark_stack_top = GC_mark_stack_top;
 | |
|     register mse * mark_stack_limit = GC_mark_stack_limit;
 | |
| #   define GC_mark_stack_top mark_stack_top
 | |
| #   define GC_mark_stack_limit mark_stack_limit
 | |
| #   define GC_greatest_plausible_heap_addr greatest_ha
 | |
| #   define GC_least_plausible_heap_addr least_ha
 | |
|     
 | |
|     p = (word *)(h->hb_body);
 | |
|     plim = (word *)(((word)h) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    i = 0;
 | |
| 	    while(mark_word != 0) {
 | |
| 	      if (mark_word & 1) {
 | |
| 	          q = p[i];
 | |
| 	          GC_PUSH_ONE_HEAP(q, p + i);
 | |
| 	          q = p[i+1];
 | |
| 	          GC_PUSH_ONE_HEAP(q, p + i);
 | |
| 	      }
 | |
| 	      i += 2;
 | |
| 	      mark_word >>= 2;
 | |
| 	    }
 | |
| 	    p += WORDSZ;
 | |
| 	}
 | |
| #   undef GC_greatest_plausible_heap_addr
 | |
| #   undef GC_least_plausible_heap_addr        
 | |
| #   undef GC_mark_stack_top
 | |
| #   undef GC_mark_stack_limit
 | |
|     GC_mark_stack_top = mark_stack_top;
 | |
| }
 | |
| 
 | |
| /* Push all objects reachable from marked objects in the given block */
 | |
| /* of size 4 objects.						     */
 | |
| /* There is a risk of mark stack overflow here.  But we handle that. */
 | |
| /* And only unmarked objects get pushed, so it's not very likely.    */
 | |
| void GC_push_marked4(h, hhdr)
 | |
| struct hblk *h;
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     word * mark_word_addr = &(hhdr->hb_marks[0]);
 | |
|     register word *p;
 | |
|     word *plim;
 | |
|     register int i;
 | |
|     register word q;
 | |
|     register word mark_word;
 | |
|     register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
 | |
|     register ptr_t least_ha = GC_least_plausible_heap_addr;
 | |
|     register mse * mark_stack_top = GC_mark_stack_top;
 | |
|     register mse * mark_stack_limit = GC_mark_stack_limit;
 | |
| #   define GC_mark_stack_top mark_stack_top
 | |
| #   define GC_mark_stack_limit mark_stack_limit
 | |
| #   define GC_greatest_plausible_heap_addr greatest_ha
 | |
| #   define GC_least_plausible_heap_addr least_ha
 | |
|     
 | |
|     p = (word *)(h->hb_body);
 | |
|     plim = (word *)(((word)h) + HBLKSIZE);
 | |
| 
 | |
|     /* go through all words in block */
 | |
| 	while( p < plim )  {
 | |
| 	    mark_word = *mark_word_addr++;
 | |
| 	    i = 0;
 | |
| 	    while(mark_word != 0) {
 | |
| 	      if (mark_word & 1) {
 | |
| 	          q = p[i];
 | |
| 	          GC_PUSH_ONE_HEAP(q, p + i);
 | |
| 	          q = p[i+1];
 | |
| 	          GC_PUSH_ONE_HEAP(q, p + i + 1);
 | |
| 	          q = p[i+2];
 | |
| 	          GC_PUSH_ONE_HEAP(q, p + i + 2);
 | |
| 	          q = p[i+3];
 | |
| 	          GC_PUSH_ONE_HEAP(q, p + i + 3);
 | |
| 	      }
 | |
| 	      i += 4;
 | |
| 	      mark_word >>= 4;
 | |
| 	    }
 | |
| 	    p += WORDSZ;
 | |
| 	}
 | |
| #   undef GC_greatest_plausible_heap_addr
 | |
| #   undef GC_least_plausible_heap_addr        
 | |
| #   undef GC_mark_stack_top
 | |
| #   undef GC_mark_stack_limit
 | |
|     GC_mark_stack_top = mark_stack_top;
 | |
| }
 | |
| 
 | |
| #endif /* UNALIGNED */
 | |
| 
 | |
| #endif /* SMALL_CONFIG */
 | |
| 
 | |
| /* Push all objects reachable from marked objects in the given block */
 | |
| void GC_push_marked(h, hhdr)
 | |
| struct hblk *h;
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     register int sz = hhdr -> hb_sz;
 | |
|     register int descr = hhdr -> hb_descr;
 | |
|     register word * p;
 | |
|     register int word_no;
 | |
|     register word * lim;
 | |
|     register mse * GC_mark_stack_top_reg;
 | |
|     register mse * mark_stack_limit = GC_mark_stack_limit;
 | |
|     
 | |
|     /* Some quick shortcuts: */
 | |
| 	if ((0 | GC_DS_LENGTH) == descr) return;
 | |
|         if (GC_block_empty(hhdr)/* nothing marked */) return;
 | |
|     GC_n_rescuing_pages++;
 | |
|     GC_objects_are_marked = TRUE;
 | |
|     if (sz > MAXOBJSZ) {
 | |
|         lim = (word *)h;
 | |
|     } else {
 | |
|         lim = (word *)(h + 1) - sz;
 | |
|     }
 | |
|     
 | |
|     switch(sz) {
 | |
| #   if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)   
 | |
|      case 1:
 | |
|        GC_push_marked1(h, hhdr);
 | |
|        break;
 | |
| #   endif
 | |
| #   if !defined(SMALL_CONFIG) && !defined(UNALIGNED) && \
 | |
|        !defined(USE_MARK_BYTES)
 | |
|      case 2:
 | |
|        GC_push_marked2(h, hhdr);
 | |
|        break;
 | |
|      case 4:
 | |
|        GC_push_marked4(h, hhdr);
 | |
|        break;
 | |
| #   endif       
 | |
|      default:
 | |
|       GC_mark_stack_top_reg = GC_mark_stack_top;
 | |
|       for (p = (word *)h, word_no = 0; p <= lim; p += sz, word_no += sz) {
 | |
|          if (mark_bit_from_hdr(hhdr, word_no)) {
 | |
|            /* Mark from fields inside the object */
 | |
|              PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
 | |
| #	     ifdef GATHERSTATS
 | |
| 		/* Subtract this object from total, since it was	*/
 | |
| 		/* added in twice.					*/
 | |
| 		GC_composite_in_use -= sz;
 | |
| #	     endif
 | |
|          }
 | |
|       }
 | |
|       GC_mark_stack_top = GC_mark_stack_top_reg;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef SMALL_CONFIG
 | |
| /* Test whether any page in the given block is dirty	*/
 | |
| GC_bool GC_block_was_dirty(h, hhdr)
 | |
| struct hblk *h;
 | |
| register hdr * hhdr;
 | |
| {
 | |
|     register int sz = hhdr -> hb_sz;
 | |
|     
 | |
|     if (sz < MAXOBJSZ) {
 | |
|          return(GC_page_was_dirty(h));
 | |
|     } else {
 | |
|     	 register ptr_t p = (ptr_t)h;
 | |
|          sz = WORDS_TO_BYTES(sz);
 | |
|          while (p < (ptr_t)h + sz) {
 | |
|              if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
 | |
|              p += HBLKSIZE;
 | |
|          }
 | |
|          return(FALSE);
 | |
|     }
 | |
| }
 | |
| #endif /* SMALL_CONFIG */
 | |
| 
 | |
| /* Similar to GC_push_next_marked, but return address of next block	*/
 | |
| struct hblk * GC_push_next_marked(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     register hdr * hhdr;
 | |
|     
 | |
|     h = GC_next_used_block(h);
 | |
|     if (h == 0) return(0);
 | |
|     hhdr = HDR(h);
 | |
|     GC_push_marked(h, hhdr);
 | |
|     return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
 | |
| }
 | |
| 
 | |
| #ifndef SMALL_CONFIG
 | |
| /* Identical to above, but mark only from dirty pages	*/
 | |
| struct hblk * GC_push_next_marked_dirty(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     register hdr * hhdr;
 | |
|     
 | |
|     if (!GC_dirty_maintained) { ABORT("dirty bits not set up"); }
 | |
|     for (;;) {
 | |
|         h = GC_next_used_block(h);
 | |
|         if (h == 0) return(0);
 | |
|         hhdr = HDR(h);
 | |
| #	ifdef STUBBORN_ALLOC
 | |
|           if (hhdr -> hb_obj_kind == STUBBORN) {
 | |
|             if (GC_page_was_changed(h) && GC_block_was_dirty(h, hhdr)) {
 | |
|                 break;
 | |
|             }
 | |
|           } else {
 | |
|             if (GC_block_was_dirty(h, hhdr)) break;
 | |
|           }
 | |
| #	else
 | |
| 	  if (GC_block_was_dirty(h, hhdr)) break;
 | |
| #	endif
 | |
|         h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
 | |
|     }
 | |
|     GC_push_marked(h, hhdr);
 | |
|     return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Similar to above, but for uncollectable pages.  Needed since we	*/
 | |
| /* do not clear marks for such pages, even for full collections.	*/
 | |
| struct hblk * GC_push_next_marked_uncollectable(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     register hdr * hhdr = HDR(h);
 | |
|     
 | |
|     for (;;) {
 | |
|         h = GC_next_used_block(h);
 | |
|         if (h == 0) return(0);
 | |
|         hhdr = HDR(h);
 | |
| 	if (hhdr -> hb_obj_kind == UNCOLLECTABLE) break;
 | |
|         h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
 | |
|     }
 | |
|     GC_push_marked(h, hhdr);
 | |
|     return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
 | |
| }
 | |
| 
 | |
| 
 |