916 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			916 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 1993-1994 by Xerox Corporation.  All rights reserved.
 | |
|  *
 | |
|  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 | |
|  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 | |
|  *
 | |
|  * Permission is hereby granted to use or copy this program
 | |
|  * for any purpose,  provided the above notices are retained on all copies.
 | |
|  * Permission to modify the code and to distribute modified code is granted,
 | |
|  * provided the above notices are retained, and a notice that the code was
 | |
|  * modified is included with the above copyright notice.
 | |
|  *
 | |
|  * Author: Hans-J. Boehm (boehm@parc.xerox.com)
 | |
|  */
 | |
| /* Boehm, October 3, 1994 5:19 pm PDT */
 | |
| # include "gc.h"
 | |
| # include "cord.h"
 | |
| # include <stdlib.h>
 | |
| # include <stdio.h>
 | |
| # include <string.h>
 | |
| 
 | |
| /* An implementation of the cord primitives.  These are the only 	*/
 | |
| /* Functions that understand the representation.  We perform only	*/
 | |
| /* minimal checks on arguments to these functions.  Out of bounds	*/
 | |
| /* arguments to the iteration functions may result in client functions	*/
 | |
| /* invoked on garbage data.  In most cases, client functions should be	*/
 | |
| /* programmed defensively enough that this does not result in memory	*/
 | |
| /* smashes.								*/ 
 | |
| 
 | |
| typedef void (* oom_fn)(void);
 | |
| 
 | |
| oom_fn CORD_oom_fn = (oom_fn) 0;
 | |
| 
 | |
| # define OUT_OF_MEMORY {  if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \
 | |
| 			  ABORT("Out of memory\n"); }
 | |
| # define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); }
 | |
| 
 | |
| typedef unsigned long word;
 | |
| 
 | |
| typedef union {
 | |
|     struct Concatenation {
 | |
|     	char null;
 | |
| 	char header;
 | |
| 	char depth;	/* concatenation nesting depth. */
 | |
| 	unsigned char left_len;
 | |
| 			/* Length of left child if it is sufficiently	*/
 | |
| 			/* short; 0 otherwise.				*/
 | |
| #	    define MAX_LEFT_LEN 255
 | |
| 	word len;
 | |
| 	CORD left;	/* length(left) > 0	*/
 | |
| 	CORD right;	/* length(right) > 0	*/
 | |
|     } concatenation;
 | |
|     struct Function {
 | |
| 	char null;
 | |
| 	char header;
 | |
| 	char depth;	/* always 0	*/
 | |
| 	char left_len;	/* always 0	*/
 | |
| 	word len;
 | |
| 	CORD_fn fn;
 | |
| 	void * client_data;
 | |
|     } function;
 | |
|     struct Generic {
 | |
|     	char null;
 | |
| 	char header;
 | |
| 	char depth;
 | |
| 	char left_len;
 | |
| 	word len;
 | |
|     } generic;
 | |
|     char string[1];
 | |
| } CordRep;
 | |
| 
 | |
| # define CONCAT_HDR 1
 | |
| 	
 | |
| # define FN_HDR 4
 | |
| # define SUBSTR_HDR 6
 | |
| 	/* Substring nodes are a special case of function nodes.  	*/
 | |
| 	/* The client_data field is known to point to a substr_args	*/
 | |
| 	/* structure, and the function is either CORD_apply_access_fn 	*/
 | |
| 	/* or CORD_index_access_fn.					*/
 | |
| 
 | |
| /* The following may be applied only to function and concatenation nodes: */
 | |
| #define IS_CONCATENATION(s)  (((CordRep *)s)->generic.header == CONCAT_HDR)
 | |
| 
 | |
| #define IS_FUNCTION(s)  ((((CordRep *)s)->generic.header & FN_HDR) != 0)
 | |
| 
 | |
| #define IS_SUBSTR(s) (((CordRep *)s)->generic.header == SUBSTR_HDR)
 | |
| 
 | |
| #define LEN(s) (((CordRep *)s) -> generic.len)
 | |
| #define DEPTH(s) (((CordRep *)s) -> generic.depth)
 | |
| #define GEN_LEN(s) (CORD_IS_STRING(s) ? strlen(s) : LEN(s))
 | |
| 
 | |
| #define LEFT_LEN(c) ((c) -> left_len != 0? \
 | |
| 				(c) -> left_len \
 | |
| 				: (CORD_IS_STRING((c) -> left) ? \
 | |
| 					(c) -> len - GEN_LEN((c) -> right) \
 | |
| 					: LEN((c) -> left)))
 | |
| 
 | |
| #define SHORT_LIMIT (sizeof(CordRep) - 1)
 | |
| 	/* Cords shorter than this are C strings */
 | |
| 
 | |
| 
 | |
| /* Dump the internal representation of x to stdout, with initial 	*/
 | |
| /* indentation level n.							*/
 | |
| void CORD_dump_inner(CORD x, unsigned n)
 | |
| {
 | |
|     register size_t i;
 | |
|     
 | |
|     for (i = 0; i < (size_t)n; i++) {
 | |
|         fputs("  ", stdout);
 | |
|     }
 | |
|     if (x == 0) {
 | |
|       	fputs("NIL\n", stdout);
 | |
|     } else if (CORD_IS_STRING(x)) {
 | |
|         for (i = 0; i <= SHORT_LIMIT; i++) {
 | |
|             if (x[i] == '\0') break;
 | |
|             putchar(x[i]);
 | |
|         }
 | |
|         if (x[i] != '\0') fputs("...", stdout);
 | |
|         putchar('\n');
 | |
|     } else if (IS_CONCATENATION(x)) {
 | |
|         register struct Concatenation * conc =
 | |
|         			&(((CordRep *)x) -> concatenation);
 | |
|         printf("Concatenation: %p (len: %d, depth: %d)\n",
 | |
|                x, (int)(conc -> len), (int)(conc -> depth));
 | |
|         CORD_dump_inner(conc -> left, n+1);
 | |
|         CORD_dump_inner(conc -> right, n+1);
 | |
|     } else /* function */{
 | |
|         register struct Function * func =
 | |
|         			&(((CordRep *)x) -> function);
 | |
|         if (IS_SUBSTR(x)) printf("(Substring) ");
 | |
|         printf("Function: %p (len: %d): ", x, (int)(func -> len));
 | |
|         for (i = 0; i < 20 && i < func -> len; i++) {
 | |
|             putchar((*(func -> fn))(i, func -> client_data));
 | |
|         }
 | |
|         if (i < func -> len) fputs("...", stdout);
 | |
|         putchar('\n');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Dump the internal representation of x to stdout	*/
 | |
| void CORD_dump(CORD x)
 | |
| {
 | |
|     CORD_dump_inner(x, 0);
 | |
|     fflush(stdout);
 | |
| }
 | |
| 
 | |
| CORD CORD_cat_char_star(CORD x, const char * y, size_t leny)
 | |
| {
 | |
|     register size_t result_len;
 | |
|     register size_t lenx;
 | |
|     register int depth;
 | |
|     
 | |
|     if (x == CORD_EMPTY) return(y);
 | |
|     if (leny == 0) return(x);
 | |
|     if (CORD_IS_STRING(x)) {
 | |
|         lenx = strlen(x);
 | |
|         result_len = lenx + leny;
 | |
|         if (result_len <= SHORT_LIMIT) {
 | |
|             register char * result = GC_MALLOC_ATOMIC(result_len+1);
 | |
|         
 | |
|             if (result == 0) OUT_OF_MEMORY;
 | |
|             memcpy(result, x, lenx);
 | |
|             memcpy(result + lenx, y, leny);
 | |
|             result[result_len] = '\0';
 | |
|             return((CORD) result);
 | |
|         } else {
 | |
|             depth = 1;
 | |
|         }
 | |
|     } else {
 | |
|     	register CORD right;
 | |
|     	register CORD left;
 | |
|     	register char * new_right;
 | |
|     	register size_t right_len;
 | |
|     	
 | |
|     	lenx = LEN(x);
 | |
|     	
 | |
|         if (leny <= SHORT_LIMIT/2
 | |
|     	    && IS_CONCATENATION(x)
 | |
|             && CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) {
 | |
|             /* Merge y into right part of x. */
 | |
|             if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) {
 | |
|             	right_len = lenx - LEN(left);
 | |
|             } else if (((CordRep *)x) -> concatenation.left_len != 0) {
 | |
|                 right_len = lenx - ((CordRep *)x) -> concatenation.left_len;
 | |
|             } else {
 | |
|             	right_len = strlen(right);
 | |
|             }
 | |
|             result_len = right_len + leny;  /* length of new_right */
 | |
|             if (result_len <= SHORT_LIMIT) {
 | |
|             	new_right = GC_MALLOC_ATOMIC(result_len + 1);
 | |
|             	memcpy(new_right, right, right_len);
 | |
|             	memcpy(new_right + right_len, y, leny);
 | |
|             	new_right[result_len] = '\0';
 | |
|             	y = new_right;
 | |
|             	leny = result_len;
 | |
|             	x = left;
 | |
|             	lenx -= right_len;
 | |
|             	/* Now fall through to concatenate the two pieces: */
 | |
|             }
 | |
|             if (CORD_IS_STRING(x)) {
 | |
|                 depth = 1;
 | |
|             } else {
 | |
|                 depth = DEPTH(x) + 1;
 | |
|             }
 | |
|         } else {
 | |
|             depth = DEPTH(x) + 1;
 | |
|         }
 | |
|         result_len = lenx + leny;
 | |
|     }
 | |
|     {
 | |
|       /* The general case; lenx, result_len is known: */
 | |
|     	register struct Concatenation * result;
 | |
|     	
 | |
|     	result = GC_NEW(struct Concatenation);
 | |
|     	if (result == 0) OUT_OF_MEMORY;
 | |
|     	result->header = CONCAT_HDR;
 | |
|     	result->depth = depth;
 | |
|     	if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
 | |
|     	result->len = result_len;
 | |
|     	result->left = x;
 | |
|     	result->right = y;
 | |
|     	if (depth > MAX_DEPTH) {
 | |
|     	    return(CORD_balance((CORD)result));
 | |
|     	} else {
 | |
|     	    return((CORD) result);
 | |
|     	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| CORD CORD_cat(CORD x, CORD y)
 | |
| {
 | |
|     register size_t result_len;
 | |
|     register int depth;
 | |
|     register size_t lenx;
 | |
|     
 | |
|     if (x == CORD_EMPTY) return(y);
 | |
|     if (y == CORD_EMPTY) return(x);
 | |
|     if (CORD_IS_STRING(y)) {
 | |
|         return(CORD_cat_char_star(x, y, strlen(y)));
 | |
|     } else if (CORD_IS_STRING(x)) {
 | |
|         lenx = strlen(x);
 | |
|         depth = DEPTH(y) + 1;
 | |
|     } else {
 | |
|         register int depthy = DEPTH(y);
 | |
|         
 | |
|         lenx = LEN(x);
 | |
|         depth = DEPTH(x) + 1;
 | |
|         if (depthy >= depth) depth = depthy + 1;
 | |
|     }
 | |
|     result_len = lenx + LEN(y);
 | |
|     {
 | |
|     	register struct Concatenation * result;
 | |
|     	
 | |
|     	result = GC_NEW(struct Concatenation);
 | |
|     	if (result == 0) OUT_OF_MEMORY;
 | |
|     	result->header = CONCAT_HDR;
 | |
|     	result->depth = depth;
 | |
|     	if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
 | |
|     	result->len = result_len;
 | |
|     	result->left = x;
 | |
|     	result->right = y;
 | |
|     	return((CORD) result);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len)
 | |
| {
 | |
|     if (len <= 0) return(0);
 | |
|     if (len <= SHORT_LIMIT) {
 | |
|         register char * result;
 | |
|         register size_t i;
 | |
|         char buf[SHORT_LIMIT+1];
 | |
|         register char c;
 | |
|         
 | |
|         for (i = 0; i < len; i++) {
 | |
|             c = (*fn)(i, client_data);
 | |
|             if (c == '\0') goto gen_case;
 | |
|             buf[i] = c;
 | |
|         }
 | |
|         buf[i] = '\0';
 | |
|         result = GC_MALLOC_ATOMIC(len+1);
 | |
|         if (result == 0) OUT_OF_MEMORY;
 | |
|         strcpy(result, buf);
 | |
|         result[len] = '\0';
 | |
|         return((CORD) result);
 | |
|     }
 | |
|   gen_case:
 | |
|     {
 | |
|     	register struct Function * result;
 | |
|     	
 | |
|     	result = GC_NEW(struct Function);
 | |
|     	if (result == 0) OUT_OF_MEMORY;
 | |
|     	result->header = FN_HDR;
 | |
|     	/* depth is already 0 */
 | |
|     	result->len = len;
 | |
|     	result->fn = fn;
 | |
|     	result->client_data = client_data;
 | |
|     	return((CORD) result);
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t CORD_len(CORD x)
 | |
| {
 | |
|     if (x == 0) {
 | |
|      	return(0);
 | |
|     } else {
 | |
| 	return(GEN_LEN(x));
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct substr_args {
 | |
|     CordRep * sa_cord;
 | |
|     size_t sa_index;
 | |
| };
 | |
| 
 | |
| char CORD_index_access_fn(size_t i, void * client_data)
 | |
| {
 | |
|     register struct substr_args *descr = (struct substr_args *)client_data;
 | |
|     
 | |
|     return(((char *)(descr->sa_cord))[i + descr->sa_index]);
 | |
| }
 | |
| 
 | |
| char CORD_apply_access_fn(size_t i, void * client_data)
 | |
| {
 | |
|     register struct substr_args *descr = (struct substr_args *)client_data;
 | |
|     register struct Function * fn_cord = &(descr->sa_cord->function);
 | |
|     
 | |
|     return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data));
 | |
| }
 | |
| 
 | |
| /* A version of CORD_substr that simply returns a function node, thus	*/
 | |
| /* postponing its work.	The fourth argument is a function that may	*/
 | |
| /* be used for efficient access to the ith character.			*/
 | |
| /* Assumes i >= 0 and i + n < length(x).				*/
 | |
| CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f)
 | |
| {
 | |
|     register struct substr_args * sa = GC_NEW(struct substr_args);
 | |
|     CORD result;
 | |
|     
 | |
|     if (sa == 0) OUT_OF_MEMORY;
 | |
|     sa->sa_cord = (CordRep *)x;
 | |
|     sa->sa_index = i;
 | |
|     result = CORD_from_fn(f, (void *)sa, n);
 | |
|     ((CordRep *)result) -> function.header = SUBSTR_HDR;
 | |
|     return (result);
 | |
| }
 | |
| 
 | |
| # define SUBSTR_LIMIT (10 * SHORT_LIMIT)
 | |
| 	/* Substrings of function nodes and flat strings shorter than 	*/
 | |
| 	/* this are flat strings.  Othewise we use a functional 	*/
 | |
| 	/* representation, which is significantly slower to access.	*/
 | |
| 
 | |
| /* A version of CORD_substr that assumes i >= 0, n > 0, and i + n < length(x).*/
 | |
| CORD CORD_substr_checked(CORD x, size_t i, size_t n)
 | |
| {
 | |
|     if (CORD_IS_STRING(x)) {
 | |
|         if (n > SUBSTR_LIMIT) {
 | |
|             return(CORD_substr_closure(x, i, n, CORD_index_access_fn));
 | |
|         } else {
 | |
|             register char * result = GC_MALLOC_ATOMIC(n+1);
 | |
|             
 | |
|             if (result == 0) OUT_OF_MEMORY;
 | |
|             strncpy(result, x+i, n);
 | |
|             result[n] = '\0';
 | |
|             return(result);
 | |
|         }
 | |
|     } else if (IS_CONCATENATION(x)) {
 | |
|     	register struct Concatenation * conc
 | |
|     			= &(((CordRep *)x) -> concatenation);
 | |
|     	register size_t left_len;
 | |
|     	register size_t right_len;
 | |
|     	
 | |
|     	left_len = LEFT_LEN(conc);
 | |
|     	right_len = conc -> len - left_len;
 | |
|     	if (i >= left_len) {
 | |
|     	    if (n == right_len) return(conc -> right);
 | |
|     	    return(CORD_substr_checked(conc -> right, i - left_len, n));
 | |
|     	} else if (i+n <= left_len) {
 | |
|     	    if (n == left_len) return(conc -> left);
 | |
|     	    return(CORD_substr_checked(conc -> left, i, n));
 | |
|     	} else {
 | |
|     	    /* Need at least one character from each side. */
 | |
|     	    register CORD left_part;
 | |
|     	    register CORD right_part;
 | |
|     	    register size_t left_part_len = left_len - i;
 | |
|      	
 | |
|     	    if (i == 0) {
 | |
|     	        left_part = conc -> left;
 | |
|     	    } else {
 | |
|     	        left_part = CORD_substr_checked(conc -> left, i, left_part_len);
 | |
|     	    }
 | |
|     	    if (i + n == right_len + left_len) {
 | |
|     	         right_part = conc -> right;
 | |
|     	    } else {
 | |
|     	         right_part = CORD_substr_checked(conc -> right, 0,
 | |
|     	    				          n - left_part_len);
 | |
|     	    }
 | |
|     	    return(CORD_cat(left_part, right_part));
 | |
|     	}
 | |
|     } else /* function */ {
 | |
|         if (n > SUBSTR_LIMIT) {
 | |
|             if (IS_SUBSTR(x)) {
 | |
|             	/* Avoid nesting substring nodes.	*/
 | |
|             	register struct Function * f = &(((CordRep *)x) -> function);
 | |
|             	register struct substr_args *descr =
 | |
|             			(struct substr_args *)(f -> client_data);
 | |
|             	
 | |
|             	return(CORD_substr_closure((CORD)descr->sa_cord,
 | |
|             				   i + descr->sa_index,
 | |
|             				   n, f -> fn));
 | |
|             } else {
 | |
|                 return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
 | |
|             }
 | |
|         } else {
 | |
|             char * result;
 | |
|             register struct Function * f = &(((CordRep *)x) -> function);
 | |
|             char buf[SUBSTR_LIMIT+1];
 | |
|             register char * p = buf;
 | |
|             register char c;
 | |
|             register int j;
 | |
|             register int lim = i + n;
 | |
|             
 | |
|             for (j = i; j < lim; j++) {
 | |
|             	c = (*(f -> fn))(j, f -> client_data);
 | |
|             	if (c == '\0') {
 | |
|             	    return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
 | |
|             	}
 | |
|             	*p++ = c;
 | |
|             }
 | |
|             *p = '\0';
 | |
|             result = GC_MALLOC_ATOMIC(n+1);
 | |
|             if (result == 0) OUT_OF_MEMORY;
 | |
|             strcpy(result, buf);
 | |
|             return(result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| CORD CORD_substr(CORD x, size_t i, size_t n)
 | |
| {
 | |
|     register size_t len = CORD_len(x);
 | |
|     
 | |
|     if (i >= len || n <= 0) return(0);
 | |
|     	/* n < 0 is impossible in a correct C implementation, but	*/
 | |
|     	/* quite possible  under SunOS 4.X.				*/
 | |
|     if (i + n > len) n = len - i;
 | |
| #   ifndef __STDC__
 | |
|       if (i < 0) ABORT("CORD_substr: second arg. negative");
 | |
|     	/* Possible only if both client and C implementation are buggy.	*/
 | |
|     	/* But empirically this happens frequently.			*/
 | |
| #   endif
 | |
|     return(CORD_substr_checked(x, i, n));
 | |
| }
 | |
| 
 | |
| /* See cord.h for definition.  We assume i is in range.	*/
 | |
| int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1,
 | |
| 			 CORD_batched_iter_fn f2, void * client_data)
 | |
| {
 | |
|     if (x == 0) return(0);
 | |
|     if (CORD_IS_STRING(x)) {
 | |
|     	register const char *p = x+i;
 | |
|     	
 | |
|     	if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big");
 | |
|         if (f2 != CORD_NO_FN) {
 | |
|             return((*f2)(p, client_data));
 | |
|         } else {
 | |
| 	    while (*p) {
 | |
|                 if ((*f1)(*p, client_data)) return(1);
 | |
|                 p++;
 | |
| 	    }
 | |
| 	    return(0);
 | |
|         }
 | |
|     } else if (IS_CONCATENATION(x)) {
 | |
|     	register struct Concatenation * conc
 | |
|     			= &(((CordRep *)x) -> concatenation);
 | |
|     	
 | |
|     	
 | |
|     	if (i > 0) {
 | |
|     	    register size_t left_len = LEFT_LEN(conc);
 | |
|     	    
 | |
|     	    if (i >= left_len) {
 | |
|     	        return(CORD_iter5(conc -> right, i - left_len, f1, f2,
 | |
|     	        		  client_data));
 | |
|     	    }
 | |
|     	}
 | |
|     	if (CORD_iter5(conc -> left, i, f1, f2, client_data)) {
 | |
|     	    return(1);
 | |
|     	}
 | |
|     	return(CORD_iter5(conc -> right, 0, f1, f2, client_data));
 | |
|     } else /* function */ {
 | |
|         register struct Function * f = &(((CordRep *)x) -> function);
 | |
|         register size_t j;
 | |
|         register size_t lim = f -> len;
 | |
|         
 | |
|         for (j = i; j < lim; j++) {
 | |
|             if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
 | |
|                 return(1);
 | |
|             }
 | |
|         }
 | |
|         return(0);
 | |
|     }
 | |
| }
 | |
| 			
 | |
| #undef CORD_iter
 | |
| int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data)
 | |
| {
 | |
|     return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data));
 | |
| }
 | |
| 
 | |
| int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data)
 | |
| {
 | |
|     if (x == 0) return(0);
 | |
|     if (CORD_IS_STRING(x)) {
 | |
| 	register const char *p = x + i;
 | |
| 	register char c;
 | |
|                
 | |
| 	for(;;) {
 | |
| 	    c = *p;
 | |
| 	    if (c == '\0') ABORT("2nd arg to CORD_riter4 too big");
 | |
|             if ((*f1)(c, client_data)) return(1);
 | |
| 	    if (p == x) break;
 | |
|             p--;
 | |
| 	}
 | |
| 	return(0);
 | |
|     } else if (IS_CONCATENATION(x)) {
 | |
|     	register struct Concatenation * conc
 | |
|     			= &(((CordRep *)x) -> concatenation);
 | |
|     	register CORD left_part = conc -> left;
 | |
|     	register size_t left_len;
 | |
|     	
 | |
|     	left_len = LEFT_LEN(conc);
 | |
|     	if (i >= left_len) {
 | |
|     	    if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) {
 | |
|     	    	return(1);
 | |
|     	    }
 | |
|     	    return(CORD_riter4(left_part, left_len - 1, f1, client_data));
 | |
|     	} else {
 | |
|     	    return(CORD_riter4(left_part, i, f1, client_data));
 | |
|     	}
 | |
|     } else /* function */ {
 | |
|         register struct Function * f = &(((CordRep *)x) -> function);
 | |
|         register size_t j;
 | |
|         
 | |
|         for (j = i; ; j--) {
 | |
|             if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
 | |
|                 return(1);
 | |
|             }
 | |
|             if (j == 0) return(0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data)
 | |
| {
 | |
|     return(CORD_riter4(x, CORD_len(x) - 1, f1, client_data));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following functions are concerned with balancing cords.
 | |
|  * Strategy:
 | |
|  * Scan the cord from left to right, keeping the cord scanned so far
 | |
|  * as a forest of balanced trees of exponentialy decreasing length.
 | |
|  * When a new subtree needs to be added to the forest, we concatenate all
 | |
|  * shorter ones to the new tree in the appropriate order, and then insert
 | |
|  * the result into the forest.
 | |
|  * Crucial invariants:
 | |
|  * 1. The concatenation of the forest (in decreasing order) with the
 | |
|  *     unscanned part of the rope is equal to the rope being balanced.
 | |
|  * 2. All trees in the forest are balanced.
 | |
|  * 3. forest[i] has depth at most i.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|     CORD c;
 | |
|     size_t len;		/* Actual length of c 	*/
 | |
| } ForestElement;
 | |
| 
 | |
| static size_t min_len [ MAX_DEPTH ];
 | |
| 
 | |
| static int min_len_init = 0;
 | |
| 
 | |
| int CORD_max_len;
 | |
| 
 | |
| typedef ForestElement Forest [ MAX_DEPTH ];
 | |
| 			/* forest[i].len >= fib(i+1)	        */
 | |
| 			/* The string is the concatenation	*/
 | |
| 			/* of the forest in order of DECREASING */
 | |
| 			/* indices.				*/
 | |
| 
 | |
| void CORD_init_min_len()
 | |
| {
 | |
|     register int i;
 | |
|     register size_t last, previous, current;
 | |
|         
 | |
|     min_len[0] = previous = 1;
 | |
|     min_len[1] = last = 2;
 | |
|     for (i = 2; i < MAX_DEPTH; i++) {
 | |
|     	current = last + previous;
 | |
|     	if (current < last) /* overflow */ current = last;
 | |
|     	min_len[i] = current;
 | |
|     	previous = last;
 | |
|     	last = current;
 | |
|     }
 | |
|     CORD_max_len = last - 1;
 | |
|     min_len_init = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CORD_init_forest(ForestElement * forest, size_t max_len)
 | |
| {
 | |
|     register int i;
 | |
|     
 | |
|     for (i = 0; i < MAX_DEPTH; i++) {
 | |
|     	forest[i].c = 0;
 | |
|     	if (min_len[i] > max_len) return;
 | |
|     }
 | |
|     ABORT("Cord too long");
 | |
| }
 | |
| 
 | |
| /* Add a leaf to the appropriate level in the forest, cleaning		*/
 | |
| /* out lower levels as necessary.					*/
 | |
| /* Also works if x is a balanced tree of concatenations; however	*/
 | |
| /* in this case an extra concatenation node may be inserted above x;	*/
 | |
| /* This node should not be counted in the statement of the invariants.	*/
 | |
| void CORD_add_forest(ForestElement * forest, CORD x, size_t len)
 | |
| {
 | |
|     register int i = 0;
 | |
|     register CORD sum = CORD_EMPTY;
 | |
|     register size_t sum_len = 0;
 | |
|     
 | |
|     while (len > min_len[i + 1]) {
 | |
|     	if (forest[i].c != 0) {
 | |
|     	    sum = CORD_cat(forest[i].c, sum);
 | |
|     	    sum_len += forest[i].len;
 | |
|     	    forest[i].c = 0;
 | |
|     	}
 | |
|         i++;
 | |
|     }
 | |
|     /* Sum has depth at most 1 greter than what would be required 	*/
 | |
|     /* for balance.							*/
 | |
|     sum = CORD_cat(sum, x);
 | |
|     sum_len += len;
 | |
|     /* If x was a leaf, then sum is now balanced.  To see this		*/
 | |
|     /* consider the two cases in which forest[i-1] either is or is 	*/
 | |
|     /* not empty.							*/
 | |
|     while (sum_len >= min_len[i]) {
 | |
|     	if (forest[i].c != 0) {
 | |
|     	    sum = CORD_cat(forest[i].c, sum);
 | |
|     	    sum_len += forest[i].len;
 | |
|     	    /* This is again balanced, since sum was balanced, and has	*/
 | |
|     	    /* allowable depth that differs from i by at most 1.	*/
 | |
|     	    forest[i].c = 0;
 | |
|     	}
 | |
|         i++;
 | |
|     }
 | |
|     i--;
 | |
|     forest[i].c = sum;
 | |
|     forest[i].len = sum_len;
 | |
| }
 | |
| 
 | |
| CORD CORD_concat_forest(ForestElement * forest, size_t expected_len)
 | |
| {
 | |
|     register int i = 0;
 | |
|     CORD sum = 0;
 | |
|     size_t sum_len = 0;
 | |
|     
 | |
|     while (sum_len != expected_len) {
 | |
|     	if (forest[i].c != 0) {
 | |
|     	    sum = CORD_cat(forest[i].c, sum);
 | |
|     	    sum_len += forest[i].len;
 | |
|     	}
 | |
|         i++;
 | |
|     }
 | |
|     return(sum);
 | |
| }
 | |
| 
 | |
| /* Insert the frontier of x into forest.  Balanced subtrees are	*/
 | |
| /* treated as leaves.  This potentially adds one to the depth	*/
 | |
| /* of the final tree.						*/
 | |
| void CORD_balance_insert(CORD x, size_t len, ForestElement * forest)
 | |
| {
 | |
|     register int depth;
 | |
|     
 | |
|     if (CORD_IS_STRING(x)) {
 | |
|         CORD_add_forest(forest, x, len);
 | |
|     } else if (IS_CONCATENATION(x)
 | |
|                && ((depth = DEPTH(x)) >= MAX_DEPTH
 | |
|                    || len < min_len[depth])) {
 | |
|     	register struct Concatenation * conc
 | |
|     			= &(((CordRep *)x) -> concatenation);
 | |
|     	size_t left_len = LEFT_LEN(conc);
 | |
|     	
 | |
|     	CORD_balance_insert(conc -> left, left_len, forest);
 | |
|     	CORD_balance_insert(conc -> right, len - left_len, forest);
 | |
|     } else /* function or balanced */ {
 | |
|     	CORD_add_forest(forest, x, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| CORD CORD_balance(CORD x)
 | |
| {
 | |
|     Forest forest;
 | |
|     register size_t len;
 | |
|     
 | |
|     if (x == 0) return(0);
 | |
|     if (CORD_IS_STRING(x)) return(x);
 | |
|     if (!min_len_init) CORD_init_min_len();
 | |
|     len = LEN(x);
 | |
|     CORD_init_forest(forest, len);
 | |
|     CORD_balance_insert(x, len, forest);
 | |
|     return(CORD_concat_forest(forest, len));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Position primitives	*/
 | |
| 
 | |
| /* Private routines to deal with the hard cases only: */
 | |
| 
 | |
| /* P contains a prefix of the  path to cur_pos.	Extend it to a full	*/
 | |
| /* path and set up leaf info.						*/
 | |
| /* Return 0 if past the end of cord, 1 o.w.				*/
 | |
| void CORD__extend_path(register CORD_pos p)
 | |
| {
 | |
|      register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]);
 | |
|      register CORD top = current_pe -> pe_cord;
 | |
|      register size_t pos = p[0].cur_pos;
 | |
|      register size_t top_pos = current_pe -> pe_start_pos;
 | |
|      register size_t top_len = GEN_LEN(top);
 | |
|      
 | |
|      /* Fill in the rest of the path. */
 | |
|        while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) {
 | |
|      	 register struct Concatenation * conc =
 | |
|      	 		&(((CordRep *)top) -> concatenation);
 | |
|      	 register size_t left_len;
 | |
|      	 
 | |
|      	 left_len = LEFT_LEN(conc);
 | |
|      	 current_pe++;
 | |
|      	 if (pos >= top_pos + left_len) {
 | |
|      	     current_pe -> pe_cord = top = conc -> right;
 | |
|      	     current_pe -> pe_start_pos = top_pos = top_pos + left_len;
 | |
|      	     top_len -= left_len;
 | |
|      	 } else {
 | |
|      	     current_pe -> pe_cord = top = conc -> left;
 | |
|      	     current_pe -> pe_start_pos = top_pos;
 | |
|      	     top_len = left_len;
 | |
|      	 }
 | |
|      	 p[0].path_len++;
 | |
|        }
 | |
|      /* Fill in leaf description for fast access. */
 | |
|        if (CORD_IS_STRING(top)) {
 | |
|          p[0].cur_leaf = top;
 | |
|          p[0].cur_start = top_pos;
 | |
|          p[0].cur_end = top_pos + top_len;
 | |
|        } else {
 | |
|          p[0].cur_end = 0;
 | |
|        }
 | |
|        if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID;
 | |
| }
 | |
| 
 | |
| char CORD__pos_fetch(register CORD_pos p)
 | |
| {
 | |
|     /* Leaf is a function node */
 | |
|     struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]);
 | |
|     CORD leaf = pe -> pe_cord;
 | |
|     register struct Function * f = &(((CordRep *)leaf) -> function);
 | |
|     
 | |
|     if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf");
 | |
|     return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data));
 | |
| }
 | |
| 
 | |
| void CORD__next(register CORD_pos p)
 | |
| {
 | |
|     register size_t cur_pos = p[0].cur_pos + 1;
 | |
|     register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
 | |
|     register CORD leaf = current_pe -> pe_cord;
 | |
|     
 | |
|     /* Leaf is not a string or we're at end of leaf */
 | |
|     p[0].cur_pos = cur_pos;
 | |
|     if (!CORD_IS_STRING(leaf)) {
 | |
|     	/* Function leaf	*/
 | |
|     	register struct Function * f = &(((CordRep *)leaf) -> function);
 | |
|     	register size_t start_pos = current_pe -> pe_start_pos;
 | |
|     	register size_t end_pos = start_pos + f -> len;
 | |
|     	
 | |
|     	if (cur_pos < end_pos) {
 | |
|     	  /* Fill cache and return. */
 | |
|     	    register size_t i;
 | |
|     	    register size_t limit = cur_pos + FUNCTION_BUF_SZ;
 | |
|     	    register CORD_fn fn = f -> fn;
 | |
|     	    register void * client_data = f -> client_data;
 | |
|     	    
 | |
|     	    if (limit > end_pos) {
 | |
|     	        limit = end_pos;
 | |
|     	    }
 | |
|     	    for (i = cur_pos; i < limit; i++) {
 | |
|     	        p[0].function_buf[i - cur_pos] =
 | |
|     	        	(*fn)(i - start_pos, client_data);
 | |
|     	    }
 | |
|     	    p[0].cur_start = cur_pos;
 | |
|     	    p[0].cur_leaf = p[0].function_buf;
 | |
|     	    p[0].cur_end = limit;
 | |
|     	    return;
 | |
|     	}
 | |
|     }
 | |
|     /* End of leaf	*/
 | |
|     /* Pop the stack until we find two concatenation nodes with the 	*/
 | |
|     /* same start position: this implies we were in left part.		*/
 | |
|     {
 | |
|     	while (p[0].path_len > 0
 | |
|     	       && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) {
 | |
|     	    p[0].path_len--;
 | |
|     	    current_pe--;
 | |
|     	}
 | |
|     	if (p[0].path_len == 0) {
 | |
| 	    p[0].path_len = CORD_POS_INVALID;
 | |
|             return;
 | |
| 	}
 | |
|     }
 | |
|     p[0].path_len--;
 | |
|     CORD__extend_path(p);
 | |
| }
 | |
| 
 | |
| void CORD__prev(register CORD_pos p)
 | |
| {
 | |
|     register struct CORD_pe * pe = &(p[0].path[p[0].path_len]);
 | |
|     
 | |
|     if (p[0].cur_pos == 0) {
 | |
|         p[0].path_len = CORD_POS_INVALID;
 | |
|         return;
 | |
|     }
 | |
|     p[0].cur_pos--;
 | |
|     if (p[0].cur_pos >= pe -> pe_start_pos) return;
 | |
|     
 | |
|     /* Beginning of leaf	*/
 | |
|     
 | |
|     /* Pop the stack until we find two concatenation nodes with the 	*/
 | |
|     /* different start position: this implies we were in right part.	*/
 | |
|     {
 | |
|     	register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
 | |
|     	
 | |
|     	while (p[0].path_len > 0
 | |
|     	       && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) {
 | |
|     	    p[0].path_len--;
 | |
|     	    current_pe--;
 | |
|     	}
 | |
|     }
 | |
|     p[0].path_len--;
 | |
|     CORD__extend_path(p);
 | |
| }
 | |
| 
 | |
| #undef CORD_pos_fetch
 | |
| #undef CORD_next
 | |
| #undef CORD_prev
 | |
| #undef CORD_pos_to_index
 | |
| #undef CORD_pos_to_cord
 | |
| #undef CORD_pos_valid
 | |
| 
 | |
| char CORD_pos_fetch(register CORD_pos p)
 | |
| {
 | |
|     if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) {
 | |
|     	return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]);
 | |
|     } else {
 | |
|         return(CORD__pos_fetch(p));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CORD_next(CORD_pos p)
 | |
| {
 | |
|     if (p[0].cur_pos < p[0].cur_end - 1) {
 | |
|     	p[0].cur_pos++;
 | |
|     } else {
 | |
|     	CORD__next(p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CORD_prev(CORD_pos p)
 | |
| {
 | |
|     if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) {
 | |
|     	p[0].cur_pos--;
 | |
|     } else {
 | |
|     	CORD__prev(p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t CORD_pos_to_index(CORD_pos p)
 | |
| {
 | |
|     return(p[0].cur_pos);
 | |
| }
 | |
| 
 | |
| CORD CORD_pos_to_cord(CORD_pos p)
 | |
| {
 | |
|     return(p[0].path[0].pe_cord);
 | |
| }
 | |
| 
 | |
| int CORD_pos_valid(CORD_pos p)
 | |
| {
 | |
|     return(p[0].path_len != CORD_POS_INVALID);
 | |
| }
 | |
| 
 | |
| void CORD_set_pos(CORD_pos p, CORD x, size_t i)
 | |
| {
 | |
|     if (x == CORD_EMPTY) {
 | |
|     	p[0].path_len = CORD_POS_INVALID;
 | |
|     	return;
 | |
|     }
 | |
|     p[0].path[0].pe_cord = x;
 | |
|     p[0].path[0].pe_start_pos = 0;
 | |
|     p[0].path_len = 0;
 | |
|     p[0].cur_pos = i;
 | |
|     CORD__extend_path(p);
 | |
| }
 |