276 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*  $Id: matrix.c,v 1.7 2002/07/18 14:59:02 ukai Exp $ */
 | 
						|
/* 
 | 
						|
 * matrix.h, matrix.c: Liner equation solver using LU decomposition.
 | 
						|
 *
 | 
						|
 * by K.Okabe  Aug. 1999 
 | 
						|
 *
 | 
						|
 * LUfactor, LUsolve, Usolve and Lsolve, are based on the functions in
 | 
						|
 * Meschach Library Version 1.2b.
 | 
						|
 */
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
**
 | 
						|
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
 | 
						|
**
 | 
						|
**			     Meschach Library
 | 
						|
** 
 | 
						|
** This Meschach Library is provided "as is" without any express 
 | 
						|
** or implied warranty of any kind with respect to this software. 
 | 
						|
** In particular the authors shall not be liable for any direct, 
 | 
						|
** indirect, special, incidental or consequential damages arising 
 | 
						|
** in any way from use of the software.
 | 
						|
** 
 | 
						|
** Everyone is granted permission to copy, modify and redistribute this
 | 
						|
** Meschach Library, provided:
 | 
						|
**  1.  All copies contain this copyright notice.
 | 
						|
**  2.  All modified copies shall carry a notice stating who
 | 
						|
**      made the last modification and the date of such modification.
 | 
						|
**  3.  No charge is made for this software or works derived from it.  
 | 
						|
**      This clause shall not be construed as constraining other software
 | 
						|
**      distributed on the same medium as this software, nor is a
 | 
						|
**      distribution fee considered a charge.
 | 
						|
**
 | 
						|
***************************************************************************/
 | 
						|
 | 
						|
#include "config.h"
 | 
						|
#include "matrix.h"
 | 
						|
#include "gc.h"
 | 
						|
 | 
						|
/* 
 | 
						|
 * Macros from "fm.h".
 | 
						|
 */
 | 
						|
 | 
						|
#define New(type)       ((type*)GC_MALLOC(sizeof(type)))
 | 
						|
#define NewAtom(type)   ((type*)GC_MALLOC_ATOMIC(sizeof(type)))
 | 
						|
#define New_N(type,n)   ((type*)GC_MALLOC((n)*sizeof(type)))
 | 
						|
#define NewAtom_N(type,n)       ((type*)GC_MALLOC_ATOMIC((n)*sizeof(type)))
 | 
						|
#define Renew_N(type,ptr,n)   ((type*)GC_REALLOC((ptr),(n)*sizeof(type)))
 | 
						|
 | 
						|
#define SWAPD(a,b) { double tmp = a; a = b; b = tmp; }
 | 
						|
#define SWAPI(a,b) { int tmp = a; a = b; b = tmp; }
 | 
						|
 | 
						|
#ifdef HAVE_FLOAT_H
 | 
						|
#include <float.h>
 | 
						|
#endif				/* not HAVE_FLOAT_H */
 | 
						|
#if defined(DBL_MAX)
 | 
						|
static double Tiny = 10.0 / DBL_MAX;
 | 
						|
#elif defined(FLT_MAX)
 | 
						|
static double Tiny = 10.0 / FLT_MAX;
 | 
						|
#else				/* not defined(FLT_MAX) */
 | 
						|
static double Tiny = 1.0e-30;
 | 
						|
#endif				/* not defined(FLT_MAX */
 | 
						|
 | 
						|
/* 
 | 
						|
 * LUfactor -- gaussian elimination with scaled partial pivoting
 | 
						|
 *          -- Note: returns LU matrix which is A.
 | 
						|
 */
 | 
						|
 | 
						|
int
 | 
						|
LUfactor(Matrix A, int *indexarray)
 | 
						|
{
 | 
						|
    int dim = A->dim, i, j, k, i_max, k_max;
 | 
						|
    Vector scale;
 | 
						|
    double mx, tmp;
 | 
						|
 | 
						|
    scale = new_vector(dim);
 | 
						|
 | 
						|
    for (i = 0; i < dim; i++)
 | 
						|
	indexarray[i] = i;
 | 
						|
 | 
						|
    for (i = 0; i < dim; i++) {
 | 
						|
	mx = 0.;
 | 
						|
	for (j = 0; j < dim; j++) {
 | 
						|
	    tmp = fabs(M_VAL(A, i, j));
 | 
						|
	    if (mx < tmp)
 | 
						|
		mx = tmp;
 | 
						|
	}
 | 
						|
	scale->ve[i] = mx;
 | 
						|
    }
 | 
						|
 | 
						|
    k_max = dim - 1;
 | 
						|
    for (k = 0; k < k_max; k++) {
 | 
						|
	mx = 0.;
 | 
						|
	i_max = -1;
 | 
						|
	for (i = k; i < dim; i++) {
 | 
						|
	    if (fabs(scale->ve[i]) >= Tiny * fabs(M_VAL(A, i, k))) {
 | 
						|
		tmp = fabs(M_VAL(A, i, k)) / scale->ve[i];
 | 
						|
		if (mx < tmp) {
 | 
						|
		    mx = tmp;
 | 
						|
		    i_max = i;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (i_max == -1) {
 | 
						|
	    M_VAL(A, k, k) = 0.;
 | 
						|
	    continue;
 | 
						|
	}
 | 
						|
 | 
						|
	if (i_max != k) {
 | 
						|
	    SWAPI(indexarray[i_max], indexarray[k]);
 | 
						|
	    for (j = 0; j < dim; j++)
 | 
						|
		SWAPD(M_VAL(A, i_max, j), M_VAL(A, k, j));
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = k + 1; i < dim; i++) {
 | 
						|
	    tmp = M_VAL(A, i, k) = M_VAL(A, i, k) / M_VAL(A, k, k);
 | 
						|
	    for (j = k + 1; j < dim; j++)
 | 
						|
		M_VAL(A, i, j) -= tmp * M_VAL(A, k, j);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * LUsolve -- given an LU factorisation in A, solve Ax=b.
 | 
						|
 */
 | 
						|
 | 
						|
int
 | 
						|
LUsolve(Matrix A, int *indexarray, Vector b, Vector x)
 | 
						|
{
 | 
						|
    int i, dim = A->dim;
 | 
						|
 | 
						|
    for (i = 0; i < dim; i++)
 | 
						|
	x->ve[i] = b->ve[indexarray[i]];
 | 
						|
 | 
						|
    if (Lsolve(A, x, x, 1.) == -1 || Usolve(A, x, x, 0.) == -1)
 | 
						|
	return -1;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* m_inverse -- returns inverse of A, provided A is not too rank deficient
 | 
						|
 *           -- uses LU factorisation */
 | 
						|
#if 0
 | 
						|
Matrix
 | 
						|
m_inverse(Matrix A, Matrix out)
 | 
						|
{
 | 
						|
    int *indexarray = NewAtom_N(int, A->dim);
 | 
						|
    Matrix A1 = new_matrix(A->dim);
 | 
						|
    m_copy(A, A1);
 | 
						|
    LUfactor(A1, indexarray);
 | 
						|
    return LUinverse(A1, indexarray, out);
 | 
						|
}
 | 
						|
#endif				/* 0 */
 | 
						|
 | 
						|
Matrix
 | 
						|
LUinverse(Matrix A, int *indexarray, Matrix out)
 | 
						|
{
 | 
						|
    int i, j, dim = A->dim;
 | 
						|
    Vector tmp, tmp2;
 | 
						|
 | 
						|
    if (!out)
 | 
						|
	out = new_matrix(dim);
 | 
						|
    tmp = new_vector(dim);
 | 
						|
    tmp2 = new_vector(dim);
 | 
						|
    for (i = 0; i < dim; i++) {
 | 
						|
	for (j = 0; j < dim; j++)
 | 
						|
	    tmp->ve[j] = 0.;
 | 
						|
	tmp->ve[i] = 1.;
 | 
						|
	if (LUsolve(A, indexarray, tmp, tmp2) == -1)
 | 
						|
	    return NULL;
 | 
						|
	for (j = 0; j < dim; j++)
 | 
						|
	    M_VAL(out, j, i) = tmp2->ve[j];
 | 
						|
    }
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * Usolve -- back substitution with optional over-riding diagonal
 | 
						|
 *        -- can be in-situ but doesn't need to be.
 | 
						|
 */
 | 
						|
 | 
						|
int
 | 
						|
Usolve(Matrix mat, Vector b, Vector out, double diag)
 | 
						|
{
 | 
						|
    int i, j, i_lim, dim = mat->dim;
 | 
						|
    double sum;
 | 
						|
 | 
						|
    for (i = dim - 1; i >= 0; i--) {
 | 
						|
	if (b->ve[i] != 0.)
 | 
						|
	    break;
 | 
						|
	else
 | 
						|
	    out->ve[i] = 0.;
 | 
						|
    }
 | 
						|
    i_lim = i;
 | 
						|
 | 
						|
    for (; i >= 0; i--) {
 | 
						|
	sum = b->ve[i];
 | 
						|
	for (j = i + 1; j <= i_lim; j++)
 | 
						|
	    sum -= M_VAL(mat, i, j) * out->ve[j];
 | 
						|
	if (diag == 0.) {
 | 
						|
	    if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum))
 | 
						|
		return -1;
 | 
						|
	    else
 | 
						|
		out->ve[i] = sum / M_VAL(mat, i, i);
 | 
						|
	}
 | 
						|
	else
 | 
						|
	    out->ve[i] = sum / diag;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * Lsolve -- forward elimination with (optional) default diagonal value.
 | 
						|
 */
 | 
						|
 | 
						|
int
 | 
						|
Lsolve(Matrix mat, Vector b, Vector out, double diag)
 | 
						|
{
 | 
						|
    int i, j, i_lim, dim = mat->dim;
 | 
						|
    double sum;
 | 
						|
 | 
						|
    for (i = 0; i < dim; i++) {
 | 
						|
	if (b->ve[i] != 0.)
 | 
						|
	    break;
 | 
						|
	else
 | 
						|
	    out->ve[i] = 0.;
 | 
						|
    }
 | 
						|
    i_lim = i;
 | 
						|
 | 
						|
    for (; i < dim; i++) {
 | 
						|
	sum = b->ve[i];
 | 
						|
	for (j = i_lim; j < i; j++)
 | 
						|
	    sum -= M_VAL(mat, i, j) * out->ve[j];
 | 
						|
	if (diag == 0.) {
 | 
						|
	    if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum))
 | 
						|
		return -1;
 | 
						|
	    else
 | 
						|
		out->ve[i] = sum / M_VAL(mat, i, i);
 | 
						|
	}
 | 
						|
	else
 | 
						|
	    out->ve[i] = sum / diag;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * new_matrix -- generate a nxn matrix.
 | 
						|
 */
 | 
						|
 | 
						|
Matrix
 | 
						|
new_matrix(int n)
 | 
						|
{
 | 
						|
    Matrix mat;
 | 
						|
 | 
						|
    mat = New(struct matrix);
 | 
						|
    mat->dim = n;
 | 
						|
    mat->me = NewAtom_N(double, n * n);
 | 
						|
    return mat;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * new_matrix -- generate a n-dimension vector.
 | 
						|
 */
 | 
						|
 | 
						|
Vector
 | 
						|
new_vector(int n)
 | 
						|
{
 | 
						|
    Vector vec;
 | 
						|
 | 
						|
    vec = New(struct vector);
 | 
						|
    vec->dim = n;
 | 
						|
    vec->ve = NewAtom_N(double, n);
 | 
						|
    return vec;
 | 
						|
}
 |