Initial revision
This commit is contained in:
56
gc/include/backptr.h
Normal file
56
gc/include/backptr.h
Normal file
@@ -0,0 +1,56 @@
|
||||
/*
|
||||
* This is a simple API to implement pointer back tracing, i.e.
|
||||
* to answer questions such as "who is pointing to this" or
|
||||
* "why is this object being retained by the collector"
|
||||
*
|
||||
* This API assumes that we have an ANSI C compiler.
|
||||
*
|
||||
* Most of these calls yield useful information on only after
|
||||
* a garbage collection. Usually the client will first force
|
||||
* a full collection and then gather information, preferably
|
||||
* before much intervening allocation.
|
||||
*
|
||||
* The implementation of the interface is only about 99.9999%
|
||||
* correct. It is intended to be good enough for profiling,
|
||||
* but is not intended to be used with production code.
|
||||
*
|
||||
* Results are likely to be much more useful if all allocation is
|
||||
* accomplished through the debugging allocators.
|
||||
*
|
||||
* The implementation idea is due to A. Demers.
|
||||
*/
|
||||
|
||||
/* Store information about the object referencing dest in *base_p */
|
||||
/* and *offset_p. */
|
||||
/* If multiple objects or roots point to dest, the one reported */
|
||||
/* will be the last on used by the garbage collector to trace the */
|
||||
/* object. */
|
||||
/* source is root ==> *base_p = address, *offset_p = 0 */
|
||||
/* source is heap object ==> *base_p != 0, *offset_p = offset */
|
||||
/* Returns 1 on success, 0 if source couldn't be determined. */
|
||||
/* Dest can be any address within a heap object. */
|
||||
typedef enum { GC_UNREFERENCED, /* No refence info available. */
|
||||
GC_NO_SPACE, /* Dest not allocated with debug alloc */
|
||||
GC_REFD_FROM_ROOT, /* Referenced directly by root *base_p */
|
||||
GC_REFD_FROM_HEAP, /* Referenced from another heap obj. */
|
||||
GC_FINALIZER_REFD /* Finalizable and hence accessible. */
|
||||
} GC_ref_kind;
|
||||
|
||||
GC_ref_kind GC_get_back_ptr_info(void *dest, void **base_p, size_t *offset_p);
|
||||
|
||||
/* Generate a random heap address. */
|
||||
/* The resulting address is in the heap, but */
|
||||
/* not necessarily inside a valid object. */
|
||||
void * GC_generate_random_heap_address(void);
|
||||
|
||||
/* Generate a random address inside a valid marked heap object. */
|
||||
void * GC_generate_random_valid_address(void);
|
||||
|
||||
/* Force a garbage collection and generate a backtrace from a */
|
||||
/* random heap address. */
|
||||
/* This uses the GC logging mechanism (GC_printf) to produce */
|
||||
/* output. It can often be called from a debugger. The */
|
||||
/* source in dbg_mlc.c also serves as a sample client. */
|
||||
void GC_generate_random_backtrace(void);
|
||||
|
||||
|
||||
327
gc/include/cord.h
Normal file
327
gc/include/cord.h
Normal file
@@ -0,0 +1,327 @@
|
||||
/*
|
||||
* Copyright (c) 1993-1994 by Xerox Corporation. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*
|
||||
* Author: Hans-J. Boehm (boehm@parc.xerox.com)
|
||||
*/
|
||||
/* Boehm, October 5, 1995 4:20 pm PDT */
|
||||
|
||||
/*
|
||||
* Cords are immutable character strings. A number of operations
|
||||
* on long cords are much more efficient than their strings.h counterpart.
|
||||
* In particular, concatenation takes constant time independent of the length
|
||||
* of the arguments. (Cords are represented as trees, with internal
|
||||
* nodes representing concatenation and leaves consisting of either C
|
||||
* strings or a functional description of the string.)
|
||||
*
|
||||
* The following are reasonable applications of cords. They would perform
|
||||
* unacceptably if C strings were used:
|
||||
* - A compiler that produces assembly language output by repeatedly
|
||||
* concatenating instructions onto a cord representing the output file.
|
||||
* - A text editor that converts the input file to a cord, and then
|
||||
* performs editing operations by producing a new cord representing
|
||||
* the file after echa character change (and keeping the old ones in an
|
||||
* edit history)
|
||||
*
|
||||
* For optimal performance, cords should be built by
|
||||
* concatenating short sections.
|
||||
* This interface is designed for maximum compatibility with C strings.
|
||||
* ASCII NUL characters may be embedded in cords using CORD_from_fn.
|
||||
* This is handled correctly, but CORD_to_char_star will produce a string
|
||||
* with embedded NULs when given such a cord.
|
||||
*
|
||||
* This interface is fairly big, largely for performance reasons.
|
||||
* The most basic constants and functions:
|
||||
*
|
||||
* CORD - the type fo a cord;
|
||||
* CORD_EMPTY - empty cord;
|
||||
* CORD_len(cord) - length of a cord;
|
||||
* CORD_cat(cord1,cord2) - concatenation of two cords;
|
||||
* CORD_substr(cord, start, len) - substring (or subcord);
|
||||
* CORD_pos i; CORD_FOR(i, cord) { ... CORD_pos_fetch(i) ... } -
|
||||
* examine each character in a cord. CORD_pos_fetch(i) is the char.
|
||||
* CORD_fetch(int i) - Retrieve i'th character (slowly).
|
||||
* CORD_cmp(cord1, cord2) - compare two cords.
|
||||
* CORD_from_file(FILE * f) - turn a read-only file into a cord.
|
||||
* CORD_to_char_star(cord) - convert to C string.
|
||||
* (Non-NULL C constant strings are cords.)
|
||||
* CORD_printf (etc.) - cord version of printf. Use %r for cords.
|
||||
*/
|
||||
# ifndef CORD_H
|
||||
|
||||
# define CORD_H
|
||||
# include <stddef.h>
|
||||
# include <stdio.h>
|
||||
/* Cords have type const char *. This is cheating quite a bit, and not */
|
||||
/* 100% portable. But it means that nonempty character string */
|
||||
/* constants may be used as cords directly, provided the string is */
|
||||
/* never modified in place. The empty cord is represented by, and */
|
||||
/* can be written as, 0. */
|
||||
|
||||
typedef const char * CORD;
|
||||
|
||||
/* An empty cord is always represented as nil */
|
||||
# define CORD_EMPTY 0
|
||||
|
||||
/* Is a nonempty cord represented as a C string? */
|
||||
#define CORD_IS_STRING(s) (*(s) != '\0')
|
||||
|
||||
/* Concatenate two cords. If the arguments are C strings, they may */
|
||||
/* not be subsequently altered. */
|
||||
CORD CORD_cat(CORD x, CORD y);
|
||||
|
||||
/* Concatenate a cord and a C string with known length. Except for the */
|
||||
/* empty string case, this is a special case of CORD_cat. Since the */
|
||||
/* length is known, it can be faster. */
|
||||
/* The string y is shared with the resulting CORD. Hence it should */
|
||||
/* not be altered by the caller. */
|
||||
CORD CORD_cat_char_star(CORD x, const char * y, size_t leny);
|
||||
|
||||
/* Compute the length of a cord */
|
||||
size_t CORD_len(CORD x);
|
||||
|
||||
/* Cords may be represented by functions defining the ith character */
|
||||
typedef char (* CORD_fn)(size_t i, void * client_data);
|
||||
|
||||
/* Turn a functional description into a cord. */
|
||||
CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len);
|
||||
|
||||
/* Return the substring (subcord really) of x with length at most n, */
|
||||
/* starting at position i. (The initial character has position 0.) */
|
||||
CORD CORD_substr(CORD x, size_t i, size_t n);
|
||||
|
||||
/* Return the argument, but rebalanced to allow more efficient */
|
||||
/* character retrieval, substring operations, and comparisons. */
|
||||
/* This is useful only for cords that were built using repeated */
|
||||
/* concatenation. Guarantees log time access to the result, unless */
|
||||
/* x was obtained through a large number of repeated substring ops */
|
||||
/* or the embedded functional descriptions take longer to evaluate. */
|
||||
/* May reallocate significant parts of the cord. The argument is not */
|
||||
/* modified; only the result is balanced. */
|
||||
CORD CORD_balance(CORD x);
|
||||
|
||||
/* The following traverse a cord by applying a function to each */
|
||||
/* character. This is occasionally appropriate, especially where */
|
||||
/* speed is crucial. But, since C doesn't have nested functions, */
|
||||
/* clients of this sort of traversal are clumsy to write. Consider */
|
||||
/* the functions that operate on cord positions instead. */
|
||||
|
||||
/* Function to iteratively apply to individual characters in cord. */
|
||||
typedef int (* CORD_iter_fn)(char c, void * client_data);
|
||||
|
||||
/* Function to apply to substrings of a cord. Each substring is a */
|
||||
/* a C character string, not a general cord. */
|
||||
typedef int (* CORD_batched_iter_fn)(const char * s, void * client_data);
|
||||
# define CORD_NO_FN ((CORD_batched_iter_fn)0)
|
||||
|
||||
/* Apply f1 to each character in the cord, in ascending order, */
|
||||
/* starting at position i. If */
|
||||
/* f2 is not CORD_NO_FN, then multiple calls to f1 may be replaced by */
|
||||
/* a single call to f2. The parameter f2 is provided only to allow */
|
||||
/* some optimization by the client. This terminates when the right */
|
||||
/* end of this string is reached, or when f1 or f2 return != 0. In the */
|
||||
/* latter case CORD_iter returns != 0. Otherwise it returns 0. */
|
||||
/* The specified value of i must be < CORD_len(x). */
|
||||
int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1,
|
||||
CORD_batched_iter_fn f2, void * client_data);
|
||||
|
||||
/* A simpler version that starts at 0, and without f2: */
|
||||
int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data);
|
||||
# define CORD_iter(x, f1, cd) CORD_iter5(x, 0, f1, CORD_NO_FN, cd)
|
||||
|
||||
/* Similar to CORD_iter5, but end-to-beginning. No provisions for */
|
||||
/* CORD_batched_iter_fn. */
|
||||
int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data);
|
||||
|
||||
/* A simpler version that starts at the end: */
|
||||
int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data);
|
||||
|
||||
/* Functions that operate on cord positions. The easy way to traverse */
|
||||
/* cords. A cord position is logically a pair consisting of a cord */
|
||||
/* and an index into that cord. But it is much faster to retrieve a */
|
||||
/* charcter based on a position than on an index. Unfortunately, */
|
||||
/* positions are big (order of a few 100 bytes), so allocate them with */
|
||||
/* caution. */
|
||||
/* Things in cord_pos.h should be treated as opaque, except as */
|
||||
/* described below. Also note that */
|
||||
/* CORD_pos_fetch, CORD_next and CORD_prev have both macro and function */
|
||||
/* definitions. The former may evaluate their argument more than once. */
|
||||
# include "private/cord_pos.h"
|
||||
|
||||
/*
|
||||
Visible definitions from above:
|
||||
|
||||
typedef <OPAQUE but fairly big> CORD_pos[1];
|
||||
|
||||
* Extract the cord from a position:
|
||||
CORD CORD_pos_to_cord(CORD_pos p);
|
||||
|
||||
* Extract the current index from a position:
|
||||
size_t CORD_pos_to_index(CORD_pos p);
|
||||
|
||||
* Fetch the character located at the given position:
|
||||
char CORD_pos_fetch(CORD_pos p);
|
||||
|
||||
* Initialize the position to refer to the given cord and index.
|
||||
* Note that this is the most expensive function on positions:
|
||||
void CORD_set_pos(CORD_pos p, CORD x, size_t i);
|
||||
|
||||
* Advance the position to the next character.
|
||||
* P must be initialized and valid.
|
||||
* Invalidates p if past end:
|
||||
void CORD_next(CORD_pos p);
|
||||
|
||||
* Move the position to the preceding character.
|
||||
* P must be initialized and valid.
|
||||
* Invalidates p if past beginning:
|
||||
void CORD_prev(CORD_pos p);
|
||||
|
||||
* Is the position valid, i.e. inside the cord?
|
||||
int CORD_pos_valid(CORD_pos p);
|
||||
*/
|
||||
# define CORD_FOR(pos, cord) \
|
||||
for (CORD_set_pos(pos, cord, 0); CORD_pos_valid(pos); CORD_next(pos))
|
||||
|
||||
|
||||
/* An out of memory handler to call. May be supplied by client. */
|
||||
/* Must not return. */
|
||||
extern void (* CORD_oom_fn)(void);
|
||||
|
||||
/* Dump the representation of x to stdout in an implementation defined */
|
||||
/* manner. Intended for debugging only. */
|
||||
void CORD_dump(CORD x);
|
||||
|
||||
/* The following could easily be implemented by the client. They are */
|
||||
/* provided in cordxtra.c for convenience. */
|
||||
|
||||
/* Concatenate a character to the end of a cord. */
|
||||
CORD CORD_cat_char(CORD x, char c);
|
||||
|
||||
/* Concatenate n cords. */
|
||||
CORD CORD_catn(int n, /* CORD */ ...);
|
||||
|
||||
/* Return the character in CORD_substr(x, i, 1) */
|
||||
char CORD_fetch(CORD x, size_t i);
|
||||
|
||||
/* Return < 0, 0, or > 0, depending on whether x < y, x = y, x > y */
|
||||
int CORD_cmp(CORD x, CORD y);
|
||||
|
||||
/* A generalization that takes both starting positions for the */
|
||||
/* comparison, and a limit on the number of characters to be compared. */
|
||||
int CORD_ncmp(CORD x, size_t x_start, CORD y, size_t y_start, size_t len);
|
||||
|
||||
/* Find the first occurrence of s in x at position start or later. */
|
||||
/* Return the position of the first character of s in x, or */
|
||||
/* CORD_NOT_FOUND if there is none. */
|
||||
size_t CORD_str(CORD x, size_t start, CORD s);
|
||||
|
||||
/* Return a cord consisting of i copies of (possibly NUL) c. Dangerous */
|
||||
/* in conjunction with CORD_to_char_star. */
|
||||
/* The resulting representation takes constant space, independent of i. */
|
||||
CORD CORD_chars(char c, size_t i);
|
||||
# define CORD_nul(i) CORD_chars('\0', (i))
|
||||
|
||||
/* Turn a file into cord. The file must be seekable. Its contents */
|
||||
/* must remain constant. The file may be accessed as an immediate */
|
||||
/* result of this call and/or as a result of subsequent accesses to */
|
||||
/* the cord. Short files are likely to be immediately read, but */
|
||||
/* long files are likely to be read on demand, possibly relying on */
|
||||
/* stdio for buffering. */
|
||||
/* We must have exclusive access to the descriptor f, i.e. we may */
|
||||
/* read it at any time, and expect the file pointer to be */
|
||||
/* where we left it. Normally this should be invoked as */
|
||||
/* CORD_from_file(fopen(...)) */
|
||||
/* CORD_from_file arranges to close the file descriptor when it is no */
|
||||
/* longer needed (e.g. when the result becomes inaccessible). */
|
||||
/* The file f must be such that ftell reflects the actual character */
|
||||
/* position in the file, i.e. the number of characters that can be */
|
||||
/* or were read with fread. On UNIX systems this is always true. On */
|
||||
/* MS Windows systems, f must be opened in binary mode. */
|
||||
CORD CORD_from_file(FILE * f);
|
||||
|
||||
/* Equivalent to the above, except that the entire file will be read */
|
||||
/* and the file pointer will be closed immediately. */
|
||||
/* The binary mode restriction from above does not apply. */
|
||||
CORD CORD_from_file_eager(FILE * f);
|
||||
|
||||
/* Equivalent to the above, except that the file will be read on demand.*/
|
||||
/* The binary mode restriction applies. */
|
||||
CORD CORD_from_file_lazy(FILE * f);
|
||||
|
||||
/* Turn a cord into a C string. The result shares no structure with */
|
||||
/* x, and is thus modifiable. */
|
||||
char * CORD_to_char_star(CORD x);
|
||||
|
||||
/* Turn a C string into a CORD. The C string is copied, and so may */
|
||||
/* subsequently be modified. */
|
||||
CORD CORD_from_char_star(const char *s);
|
||||
|
||||
/* Identical to the above, but the result may share structure with */
|
||||
/* the argument and is thus not modifiable. */
|
||||
const char * CORD_to_const_char_star(CORD x);
|
||||
|
||||
/* Write a cord to a file, starting at the current position. No */
|
||||
/* trailing NULs are newlines are added. */
|
||||
/* Returns EOF if a write error occurs, 1 otherwise. */
|
||||
int CORD_put(CORD x, FILE * f);
|
||||
|
||||
/* "Not found" result for the following two functions. */
|
||||
# define CORD_NOT_FOUND ((size_t)(-1))
|
||||
|
||||
/* A vague analog of strchr. Returns the position (an integer, not */
|
||||
/* a pointer) of the first occurrence of (char) c inside x at position */
|
||||
/* i or later. The value i must be < CORD_len(x). */
|
||||
size_t CORD_chr(CORD x, size_t i, int c);
|
||||
|
||||
/* A vague analog of strrchr. Returns index of the last occurrence */
|
||||
/* of (char) c inside x at position i or earlier. The value i */
|
||||
/* must be < CORD_len(x). */
|
||||
size_t CORD_rchr(CORD x, size_t i, int c);
|
||||
|
||||
|
||||
/* The following are also not primitive, but are implemented in */
|
||||
/* cordprnt.c. They provide functionality similar to the ANSI C */
|
||||
/* functions with corresponding names, but with the following */
|
||||
/* additions and changes: */
|
||||
/* 1. A %r conversion specification specifies a CORD argument. Field */
|
||||
/* width, precision, etc. have the same semantics as for %s. */
|
||||
/* (Note that %c,%C, and %S were already taken.) */
|
||||
/* 2. The format string is represented as a CORD. */
|
||||
/* 3. CORD_sprintf and CORD_vsprintf assign the result through the 1st */ /* argument. Unlike their ANSI C versions, there is no need to guess */
|
||||
/* the correct buffer size. */
|
||||
/* 4. Most of the conversions are implement through the native */
|
||||
/* vsprintf. Hence they are usually no faster, and */
|
||||
/* idiosyncracies of the native printf are preserved. However, */
|
||||
/* CORD arguments to CORD_sprintf and CORD_vsprintf are NOT copied; */
|
||||
/* the result shares the original structure. This may make them */
|
||||
/* very efficient in some unusual applications. */
|
||||
/* The format string is copied. */
|
||||
/* All functions return the number of characters generated or -1 on */
|
||||
/* error. This complies with the ANSI standard, but is inconsistent */
|
||||
/* with some older implementations of sprintf. */
|
||||
|
||||
/* The implementation of these is probably less portable than the rest */
|
||||
/* of this package. */
|
||||
|
||||
#ifndef CORD_NO_IO
|
||||
|
||||
#include <stdarg.h>
|
||||
|
||||
int CORD_sprintf(CORD * out, CORD format, ...);
|
||||
int CORD_vsprintf(CORD * out, CORD format, va_list args);
|
||||
int CORD_fprintf(FILE * f, CORD format, ...);
|
||||
int CORD_vfprintf(FILE * f, CORD format, va_list args);
|
||||
int CORD_printf(CORD format, ...);
|
||||
int CORD_vprintf(CORD format, va_list args);
|
||||
|
||||
#endif /* CORD_NO_IO */
|
||||
|
||||
# endif /* CORD_H */
|
||||
70
gc/include/ec.h
Normal file
70
gc/include/ec.h
Normal file
@@ -0,0 +1,70 @@
|
||||
# ifndef EC_H
|
||||
# define EC_H
|
||||
|
||||
# ifndef CORD_H
|
||||
# include "cord.h"
|
||||
# endif
|
||||
|
||||
/* Extensible cords are strings that may be destructively appended to. */
|
||||
/* They allow fast construction of cords from characters that are */
|
||||
/* being read from a stream. */
|
||||
/*
|
||||
* A client might look like:
|
||||
*
|
||||
* {
|
||||
* CORD_ec x;
|
||||
* CORD result;
|
||||
* char c;
|
||||
* FILE *f;
|
||||
*
|
||||
* ...
|
||||
* CORD_ec_init(x);
|
||||
* while(...) {
|
||||
* c = getc(f);
|
||||
* ...
|
||||
* CORD_ec_append(x, c);
|
||||
* }
|
||||
* result = CORD_balance(CORD_ec_to_cord(x));
|
||||
*
|
||||
* If a C string is desired as the final result, the call to CORD_balance
|
||||
* may be replaced by a call to CORD_to_char_star.
|
||||
*/
|
||||
|
||||
# ifndef CORD_BUFSZ
|
||||
# define CORD_BUFSZ 128
|
||||
# endif
|
||||
|
||||
typedef struct CORD_ec_struct {
|
||||
CORD ec_cord;
|
||||
char * ec_bufptr;
|
||||
char ec_buf[CORD_BUFSZ+1];
|
||||
} CORD_ec[1];
|
||||
|
||||
/* This structure represents the concatenation of ec_cord with */
|
||||
/* ec_buf[0 ... (ec_bufptr-ec_buf-1)] */
|
||||
|
||||
/* Flush the buffer part of the extended chord into ec_cord. */
|
||||
/* Note that this is almost the only real function, and it is */
|
||||
/* implemented in 6 lines in cordxtra.c */
|
||||
void CORD_ec_flush_buf(CORD_ec x);
|
||||
|
||||
/* Convert an extensible cord to a cord. */
|
||||
# define CORD_ec_to_cord(x) (CORD_ec_flush_buf(x), (x)[0].ec_cord)
|
||||
|
||||
/* Initialize an extensible cord. */
|
||||
# define CORD_ec_init(x) ((x)[0].ec_cord = 0, (x)[0].ec_bufptr = (x)[0].ec_buf)
|
||||
|
||||
/* Append a character to an extensible cord. */
|
||||
# define CORD_ec_append(x, c) \
|
||||
{ \
|
||||
if ((x)[0].ec_bufptr == (x)[0].ec_buf + CORD_BUFSZ) { \
|
||||
CORD_ec_flush_buf(x); \
|
||||
} \
|
||||
*((x)[0].ec_bufptr)++ = (c); \
|
||||
}
|
||||
|
||||
/* Append a cord to an extensible cord. Structure remains shared with */
|
||||
/* original. */
|
||||
void CORD_ec_append_cord(CORD_ec x, CORD s);
|
||||
|
||||
# endif /* EC_H */
|
||||
754
gc/include/gc.h
Normal file
754
gc/include/gc.h
Normal file
@@ -0,0 +1,754 @@
|
||||
/*
|
||||
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
||||
* Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
|
||||
* Copyright 1996 by Silicon Graphics. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Note that this defines a large number of tuning hooks, which can
|
||||
* safely be ignored in nearly all cases. For normal use it suffices
|
||||
* to call only GC_MALLOC and perhaps GC_REALLOC.
|
||||
* For better performance, also look at GC_MALLOC_ATOMIC, and
|
||||
* GC_enable_incremental. If you need an action to be performed
|
||||
* immediately before an object is collected, look at GC_register_finalizer.
|
||||
* If you are using Solaris threads, look at the end of this file.
|
||||
* Everything else is best ignored unless you encounter performance
|
||||
* problems.
|
||||
*/
|
||||
|
||||
#ifndef _GC_H
|
||||
|
||||
# define _GC_H
|
||||
# define __GC
|
||||
# include <stddef.h>
|
||||
|
||||
#if defined(__CYGWIN32__) && defined(GC_USE_DLL)
|
||||
#include "libgc_globals.h"
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && defined(_DLL)
|
||||
# ifdef GC_BUILD
|
||||
# define GC_API __declspec(dllexport)
|
||||
# else
|
||||
# define GC_API __declspec(dllimport)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(__WATCOMC__) && defined(GC_DLL)
|
||||
# ifdef GC_BUILD
|
||||
# define GC_API extern __declspec(dllexport)
|
||||
# else
|
||||
# define GC_API extern __declspec(dllimport)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef GC_API
|
||||
#define GC_API extern
|
||||
#endif
|
||||
|
||||
# if defined(__STDC__) || defined(__cplusplus)
|
||||
# define GC_PROTO(args) args
|
||||
typedef void * GC_PTR;
|
||||
# else
|
||||
# define GC_PROTO(args) ()
|
||||
typedef char * GC_PTR;
|
||||
# endif
|
||||
|
||||
# ifdef __cplusplus
|
||||
extern "C" {
|
||||
# endif
|
||||
|
||||
|
||||
/* Define word and signed_word to be unsigned and signed types of the */
|
||||
/* size as char * or void *. There seems to be no way to do this */
|
||||
/* even semi-portably. The following is probably no better/worse */
|
||||
/* than almost anything else. */
|
||||
/* The ANSI standard suggests that size_t and ptr_diff_t might be */
|
||||
/* better choices. But those appear to have incorrect definitions */
|
||||
/* on may systems. Notably "typedef int size_t" seems to be both */
|
||||
/* frequent and WRONG. */
|
||||
typedef unsigned long GC_word;
|
||||
typedef long GC_signed_word;
|
||||
|
||||
/* Public read-only variables */
|
||||
|
||||
GC_API GC_word GC_gc_no;/* Counter incremented per collection. */
|
||||
/* Includes empty GCs at startup. */
|
||||
|
||||
|
||||
/* Public R/W variables */
|
||||
|
||||
GC_API GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested));
|
||||
/* When there is insufficient memory to satisfy */
|
||||
/* an allocation request, we return */
|
||||
/* (*GC_oom_fn)(). By default this just */
|
||||
/* returns 0. */
|
||||
/* If it returns, it must return 0 or a valid */
|
||||
/* pointer to a previously allocated heap */
|
||||
/* object. */
|
||||
|
||||
GC_API int GC_find_leak;
|
||||
/* Do not actually garbage collect, but simply */
|
||||
/* report inaccessible memory that was not */
|
||||
/* deallocated with GC_free. Initial value */
|
||||
/* is determined by FIND_LEAK macro. */
|
||||
|
||||
GC_API int GC_quiet; /* Disable statistics output. Only matters if */
|
||||
/* collector has been compiled with statistics */
|
||||
/* enabled. This involves a performance cost, */
|
||||
/* and is thus not the default. */
|
||||
|
||||
GC_API int GC_finalize_on_demand;
|
||||
/* If nonzero, finalizers will only be run in */
|
||||
/* response to an eplit GC_invoke_finalizers */
|
||||
/* call. The default is determined by whether */
|
||||
/* the FINALIZE_ON_DEMAND macro is defined */
|
||||
/* when the collector is built. */
|
||||
|
||||
GC_API int GC_java_finalization;
|
||||
/* Mark objects reachable from finalizable */
|
||||
/* objects in a separate postpass. This makes */
|
||||
/* it a bit safer to use non-topologically- */
|
||||
/* ordered finalization. Default value is */
|
||||
/* determined by JAVA_FINALIZATION macro. */
|
||||
|
||||
GC_API int GC_dont_gc; /* Dont collect unless explicitly requested, e.g. */
|
||||
/* because it's not safe. */
|
||||
|
||||
GC_API int GC_dont_expand;
|
||||
/* Dont expand heap unless explicitly requested */
|
||||
/* or forced to. */
|
||||
|
||||
GC_API int GC_full_freq; /* Number of partial collections between */
|
||||
/* full collections. Matters only if */
|
||||
/* GC_incremental is set. */
|
||||
|
||||
GC_API GC_word GC_non_gc_bytes;
|
||||
/* Bytes not considered candidates for collection. */
|
||||
/* Used only to control scheduling of collections. */
|
||||
|
||||
GC_API GC_word GC_free_space_divisor;
|
||||
/* We try to make sure that we allocate at */
|
||||
/* least N/GC_free_space_divisor bytes between */
|
||||
/* collections, where N is the heap size plus */
|
||||
/* a rough estimate of the root set size. */
|
||||
/* Initially, GC_free_space_divisor = 4. */
|
||||
/* Increasing its value will use less space */
|
||||
/* but more collection time. Decreasing it */
|
||||
/* will appreciably decrease collection time */
|
||||
/* at the expense of space. */
|
||||
/* GC_free_space_divisor = 1 will effectively */
|
||||
/* disable collections. */
|
||||
|
||||
GC_API GC_word GC_max_retries;
|
||||
/* The maximum number of GCs attempted before */
|
||||
/* reporting out of memory after heap */
|
||||
/* expansion fails. Initially 0. */
|
||||
|
||||
|
||||
GC_API char *GC_stackbottom; /* Cool end of user stack. */
|
||||
/* May be set in the client prior to */
|
||||
/* calling any GC_ routines. This */
|
||||
/* avoids some overhead, and */
|
||||
/* potentially some signals that can */
|
||||
/* confuse debuggers. Otherwise the */
|
||||
/* collector attempts to set it */
|
||||
/* automatically. */
|
||||
/* For multithreaded code, this is the */
|
||||
/* cold end of the stack for the */
|
||||
/* primordial thread. */
|
||||
|
||||
/* Public procedures */
|
||||
/*
|
||||
* general purpose allocation routines, with roughly malloc calling conv.
|
||||
* The atomic versions promise that no relevant pointers are contained
|
||||
* in the object. The nonatomic versions guarantee that the new object
|
||||
* is cleared. GC_malloc_stubborn promises that no changes to the object
|
||||
* will occur after GC_end_stubborn_change has been called on the
|
||||
* result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
|
||||
* that is scanned for pointers to collectable objects, but is not itself
|
||||
* collectable. GC_malloc_uncollectable and GC_free called on the resulting
|
||||
* object implicitly update GC_non_gc_bytes appropriately.
|
||||
*/
|
||||
GC_API GC_PTR GC_malloc GC_PROTO((size_t size_in_bytes));
|
||||
GC_API GC_PTR GC_malloc_atomic GC_PROTO((size_t size_in_bytes));
|
||||
GC_API GC_PTR GC_malloc_uncollectable GC_PROTO((size_t size_in_bytes));
|
||||
GC_API GC_PTR GC_malloc_stubborn GC_PROTO((size_t size_in_bytes));
|
||||
|
||||
/* The following is only defined if the library has been suitably */
|
||||
/* compiled: */
|
||||
GC_API GC_PTR GC_malloc_atomic_uncollectable GC_PROTO((size_t size_in_bytes));
|
||||
|
||||
/* Explicitly deallocate an object. Dangerous if used incorrectly. */
|
||||
/* Requires a pointer to the base of an object. */
|
||||
/* If the argument is stubborn, it should not be changeable when freed. */
|
||||
/* An object should not be enable for finalization when it is */
|
||||
/* explicitly deallocated. */
|
||||
/* GC_free(0) is a no-op, as required by ANSI C for free. */
|
||||
GC_API void GC_free GC_PROTO((GC_PTR object_addr));
|
||||
|
||||
/*
|
||||
* Stubborn objects may be changed only if the collector is explicitly informed.
|
||||
* The collector is implicitly informed of coming change when such
|
||||
* an object is first allocated. The following routines inform the
|
||||
* collector that an object will no longer be changed, or that it will
|
||||
* once again be changed. Only nonNIL pointer stores into the object
|
||||
* are considered to be changes. The argument to GC_end_stubborn_change
|
||||
* must be exacly the value returned by GC_malloc_stubborn or passed to
|
||||
* GC_change_stubborn. (In the second case it may be an interior pointer
|
||||
* within 512 bytes of the beginning of the objects.)
|
||||
* There is a performance penalty for allowing more than
|
||||
* one stubborn object to be changed at once, but it is acceptable to
|
||||
* do so. The same applies to dropping stubborn objects that are still
|
||||
* changeable.
|
||||
*/
|
||||
GC_API void GC_change_stubborn GC_PROTO((GC_PTR));
|
||||
GC_API void GC_end_stubborn_change GC_PROTO((GC_PTR));
|
||||
|
||||
/* Return a pointer to the base (lowest address) of an object given */
|
||||
/* a pointer to a location within the object. */
|
||||
/* Return 0 if displaced_pointer doesn't point to within a valid */
|
||||
/* object. */
|
||||
GC_API GC_PTR GC_base GC_PROTO((GC_PTR displaced_pointer));
|
||||
|
||||
/* Given a pointer to the base of an object, return its size in bytes. */
|
||||
/* The returned size may be slightly larger than what was originally */
|
||||
/* requested. */
|
||||
GC_API size_t GC_size GC_PROTO((GC_PTR object_addr));
|
||||
|
||||
/* For compatibility with C library. This is occasionally faster than */
|
||||
/* a malloc followed by a bcopy. But if you rely on that, either here */
|
||||
/* or with the standard C library, your code is broken. In my */
|
||||
/* opinion, it shouldn't have been invented, but now we're stuck. -HB */
|
||||
/* The resulting object has the same kind as the original. */
|
||||
/* If the argument is stubborn, the result will have changes enabled. */
|
||||
/* It is an error to have changes enabled for the original object. */
|
||||
/* Follows ANSI comventions for NULL old_object. */
|
||||
GC_API GC_PTR GC_realloc
|
||||
GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes));
|
||||
|
||||
/* Explicitly increase the heap size. */
|
||||
/* Returns 0 on failure, 1 on success. */
|
||||
GC_API int GC_expand_hp GC_PROTO((size_t number_of_bytes));
|
||||
|
||||
/* Limit the heap size to n bytes. Useful when you're debugging, */
|
||||
/* especially on systems that don't handle running out of memory well. */
|
||||
/* n == 0 ==> unbounded. This is the default. */
|
||||
GC_API void GC_set_max_heap_size GC_PROTO((GC_word n));
|
||||
|
||||
/* Inform the collector that a certain section of statically allocated */
|
||||
/* memory contains no pointers to garbage collected memory. Thus it */
|
||||
/* need not be scanned. This is sometimes important if the application */
|
||||
/* maps large read/write files into the address space, which could be */
|
||||
/* mistaken for dynamic library data segments on some systems. */
|
||||
GC_API void GC_exclude_static_roots GC_PROTO((GC_PTR start, GC_PTR finish));
|
||||
|
||||
/* Clear the set of root segments. Wizards only. */
|
||||
GC_API void GC_clear_roots GC_PROTO((void));
|
||||
|
||||
/* Add a root segment. Wizards only. */
|
||||
GC_API void GC_add_roots GC_PROTO((char * low_address,
|
||||
char * high_address_plus_1));
|
||||
|
||||
/* Add a displacement to the set of those considered valid by the */
|
||||
/* collector. GC_register_displacement(n) means that if p was returned */
|
||||
/* by GC_malloc, then (char *)p + n will be considered to be a valid */
|
||||
/* pointer to n. N must be small and less than the size of p. */
|
||||
/* (All pointers to the interior of objects from the stack are */
|
||||
/* considered valid in any case. This applies to heap objects and */
|
||||
/* static data.) */
|
||||
/* Preferably, this should be called before any other GC procedures. */
|
||||
/* Calling it later adds to the probability of excess memory */
|
||||
/* retention. */
|
||||
/* This is a no-op if the collector was compiled with recognition of */
|
||||
/* arbitrary interior pointers enabled, which is now the default. */
|
||||
GC_API void GC_register_displacement GC_PROTO((GC_word n));
|
||||
|
||||
/* The following version should be used if any debugging allocation is */
|
||||
/* being done. */
|
||||
GC_API void GC_debug_register_displacement GC_PROTO((GC_word n));
|
||||
|
||||
/* Explicitly trigger a full, world-stop collection. */
|
||||
GC_API void GC_gcollect GC_PROTO((void));
|
||||
|
||||
/* Trigger a full world-stopped collection. Abort the collection if */
|
||||
/* and when stop_func returns a nonzero value. Stop_func will be */
|
||||
/* called frequently, and should be reasonably fast. This works even */
|
||||
/* if virtual dirty bits, and hence incremental collection is not */
|
||||
/* available for this architecture. Collections can be aborted faster */
|
||||
/* than normal pause times for incremental collection. However, */
|
||||
/* aborted collections do no useful work; the next collection needs */
|
||||
/* to start from the beginning. */
|
||||
/* Return 0 if the collection was aborted, 1 if it succeeded. */
|
||||
typedef int (* GC_stop_func) GC_PROTO((void));
|
||||
GC_API int GC_try_to_collect GC_PROTO((GC_stop_func stop_func));
|
||||
|
||||
/* Return the number of bytes in the heap. Excludes collector private */
|
||||
/* data structures. Includes empty blocks and fragmentation loss. */
|
||||
/* Includes some pages that were allocated but never written. */
|
||||
GC_API size_t GC_get_heap_size GC_PROTO((void));
|
||||
|
||||
/* Return the number of bytes allocated since the last collection. */
|
||||
GC_API size_t GC_get_bytes_since_gc GC_PROTO((void));
|
||||
|
||||
/* Enable incremental/generational collection. */
|
||||
/* Not advisable unless dirty bits are */
|
||||
/* available or most heap objects are */
|
||||
/* pointerfree(atomic) or immutable. */
|
||||
/* Don't use in leak finding mode. */
|
||||
/* Ignored if GC_dont_gc is true. */
|
||||
GC_API void GC_enable_incremental GC_PROTO((void));
|
||||
|
||||
/* Perform some garbage collection work, if appropriate. */
|
||||
/* Return 0 if there is no more work to be done. */
|
||||
/* Typically performs an amount of work corresponding roughly */
|
||||
/* to marking from one page. May do more work if further */
|
||||
/* progress requires it, e.g. if incremental collection is */
|
||||
/* disabled. It is reasonable to call this in a wait loop */
|
||||
/* until it returns 0. */
|
||||
GC_API int GC_collect_a_little GC_PROTO((void));
|
||||
|
||||
/* Allocate an object of size lb bytes. The client guarantees that */
|
||||
/* as long as the object is live, it will be referenced by a pointer */
|
||||
/* that points to somewhere within the first 256 bytes of the object. */
|
||||
/* (This should normally be declared volatile to prevent the compiler */
|
||||
/* from invalidating this assertion.) This routine is only useful */
|
||||
/* if a large array is being allocated. It reduces the chance of */
|
||||
/* accidentally retaining such an array as a result of scanning an */
|
||||
/* integer that happens to be an address inside the array. (Actually, */
|
||||
/* it reduces the chance of the allocator not finding space for such */
|
||||
/* an array, since it will try hard to avoid introducing such a false */
|
||||
/* reference.) On a SunOS 4.X or MS Windows system this is recommended */
|
||||
/* for arrays likely to be larger than 100K or so. For other systems, */
|
||||
/* or if the collector is not configured to recognize all interior */
|
||||
/* pointers, the threshold is normally much higher. */
|
||||
GC_API GC_PTR GC_malloc_ignore_off_page GC_PROTO((size_t lb));
|
||||
GC_API GC_PTR GC_malloc_atomic_ignore_off_page GC_PROTO((size_t lb));
|
||||
|
||||
#if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
|
||||
# define GC_ADD_CALLER
|
||||
# define GC_RETURN_ADDR (GC_word)__return_address
|
||||
#endif
|
||||
|
||||
#ifdef GC_ADD_CALLER
|
||||
# define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
|
||||
# define GC_EXTRA_PARAMS GC_word ra, char * descr_string, int descr_int
|
||||
#else
|
||||
# define GC_EXTRAS __FILE__, __LINE__
|
||||
# define GC_EXTRA_PARAMS char * descr_string, int descr_int
|
||||
#endif
|
||||
|
||||
/* Debugging (annotated) allocation. GC_gcollect will check */
|
||||
/* objects allocated in this way for overwrites, etc. */
|
||||
GC_API GC_PTR GC_debug_malloc
|
||||
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
|
||||
GC_API GC_PTR GC_debug_malloc_atomic
|
||||
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
|
||||
GC_API GC_PTR GC_debug_malloc_uncollectable
|
||||
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
|
||||
GC_API GC_PTR GC_debug_malloc_stubborn
|
||||
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
|
||||
GC_API void GC_debug_free GC_PROTO((GC_PTR object_addr));
|
||||
GC_API GC_PTR GC_debug_realloc
|
||||
GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes,
|
||||
GC_EXTRA_PARAMS));
|
||||
|
||||
GC_API void GC_debug_change_stubborn GC_PROTO((GC_PTR));
|
||||
GC_API void GC_debug_end_stubborn_change GC_PROTO((GC_PTR));
|
||||
# ifdef GC_DEBUG
|
||||
# define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
|
||||
# define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
|
||||
# define GC_MALLOC_UNCOLLECTABLE(sz) GC_debug_malloc_uncollectable(sz, \
|
||||
GC_EXTRAS)
|
||||
# define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
|
||||
# define GC_FREE(p) GC_debug_free(p)
|
||||
# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
|
||||
GC_debug_register_finalizer(p, f, d, of, od)
|
||||
# define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
|
||||
GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
|
||||
# define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
|
||||
# define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
|
||||
# define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
|
||||
# define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
|
||||
GC_general_register_disappearing_link(link, GC_base(obj))
|
||||
# define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
|
||||
# else
|
||||
# define GC_MALLOC(sz) GC_malloc(sz)
|
||||
# define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
|
||||
# define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
|
||||
# define GC_REALLOC(old, sz) GC_realloc(old, sz)
|
||||
# define GC_FREE(p) GC_free(p)
|
||||
# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
|
||||
GC_register_finalizer(p, f, d, of, od)
|
||||
# define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
|
||||
GC_register_finalizer_ignore_self(p, f, d, of, od)
|
||||
# define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
|
||||
# define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
|
||||
# define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
|
||||
# define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
|
||||
GC_general_register_disappearing_link(link, obj)
|
||||
# define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
|
||||
# endif
|
||||
/* The following are included because they are often convenient, and */
|
||||
/* reduce the chance for a misspecifed size argument. But calls may */
|
||||
/* expand to something syntactically incorrect if t is a complicated */
|
||||
/* type expression. */
|
||||
# define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
|
||||
# define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
|
||||
# define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
|
||||
# define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
|
||||
|
||||
/* Finalization. Some of these primitives are grossly unsafe. */
|
||||
/* The idea is to make them both cheap, and sufficient to build */
|
||||
/* a safer layer, closer to PCedar finalization. */
|
||||
/* The interface represents my conclusions from a long discussion */
|
||||
/* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, */
|
||||
/* Christian Jacobi, and Russ Atkinson. It's not perfect, and */
|
||||
/* probably nobody else agrees with it. Hans-J. Boehm 3/13/92 */
|
||||
typedef void (*GC_finalization_proc)
|
||||
GC_PROTO((GC_PTR obj, GC_PTR client_data));
|
||||
|
||||
GC_API void GC_register_finalizer
|
||||
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
|
||||
GC_finalization_proc *ofn, GC_PTR *ocd));
|
||||
GC_API void GC_debug_register_finalizer
|
||||
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
|
||||
GC_finalization_proc *ofn, GC_PTR *ocd));
|
||||
/* When obj is no longer accessible, invoke */
|
||||
/* (*fn)(obj, cd). If a and b are inaccessible, and */
|
||||
/* a points to b (after disappearing links have been */
|
||||
/* made to disappear), then only a will be */
|
||||
/* finalized. (If this does not create any new */
|
||||
/* pointers to b, then b will be finalized after the */
|
||||
/* next collection.) Any finalizable object that */
|
||||
/* is reachable from itself by following one or more */
|
||||
/* pointers will not be finalized (or collected). */
|
||||
/* Thus cycles involving finalizable objects should */
|
||||
/* be avoided, or broken by disappearing links. */
|
||||
/* All but the last finalizer registered for an object */
|
||||
/* is ignored. */
|
||||
/* Finalization may be removed by passing 0 as fn. */
|
||||
/* Finalizers are implicitly unregistered just before */
|
||||
/* they are invoked. */
|
||||
/* The old finalizer and client data are stored in */
|
||||
/* *ofn and *ocd. */
|
||||
/* Fn is never invoked on an accessible object, */
|
||||
/* provided hidden pointers are converted to real */
|
||||
/* pointers only if the allocation lock is held, and */
|
||||
/* such conversions are not performed by finalization */
|
||||
/* routines. */
|
||||
/* If GC_register_finalizer is aborted as a result of */
|
||||
/* a signal, the object may be left with no */
|
||||
/* finalization, even if neither the old nor new */
|
||||
/* finalizer were NULL. */
|
||||
/* Obj should be the nonNULL starting address of an */
|
||||
/* object allocated by GC_malloc or friends. */
|
||||
/* Note that any garbage collectable object referenced */
|
||||
/* by cd will be considered accessible until the */
|
||||
/* finalizer is invoked. */
|
||||
|
||||
/* Another versions of the above follow. It ignores */
|
||||
/* self-cycles, i.e. pointers from a finalizable object to */
|
||||
/* itself. There is a stylistic argument that this is wrong, */
|
||||
/* but it's unavoidable for C++, since the compiler may */
|
||||
/* silently introduce these. It's also benign in that specific */
|
||||
/* case. */
|
||||
GC_API void GC_register_finalizer_ignore_self
|
||||
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
|
||||
GC_finalization_proc *ofn, GC_PTR *ocd));
|
||||
GC_API void GC_debug_register_finalizer_ignore_self
|
||||
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
|
||||
GC_finalization_proc *ofn, GC_PTR *ocd));
|
||||
|
||||
/* The following routine may be used to break cycles between */
|
||||
/* finalizable objects, thus causing cyclic finalizable */
|
||||
/* objects to be finalized in the correct order. Standard */
|
||||
/* use involves calling GC_register_disappearing_link(&p), */
|
||||
/* where p is a pointer that is not followed by finalization */
|
||||
/* code, and should not be considered in determining */
|
||||
/* finalization order. */
|
||||
GC_API int GC_register_disappearing_link GC_PROTO((GC_PTR * /* link */));
|
||||
/* Link should point to a field of a heap allocated */
|
||||
/* object obj. *link will be cleared when obj is */
|
||||
/* found to be inaccessible. This happens BEFORE any */
|
||||
/* finalization code is invoked, and BEFORE any */
|
||||
/* decisions about finalization order are made. */
|
||||
/* This is useful in telling the finalizer that */
|
||||
/* some pointers are not essential for proper */
|
||||
/* finalization. This may avoid finalization cycles. */
|
||||
/* Note that obj may be resurrected by another */
|
||||
/* finalizer, and thus the clearing of *link may */
|
||||
/* be visible to non-finalization code. */
|
||||
/* There's an argument that an arbitrary action should */
|
||||
/* be allowed here, instead of just clearing a pointer. */
|
||||
/* But this causes problems if that action alters, or */
|
||||
/* examines connectivity. */
|
||||
/* Returns 1 if link was already registered, 0 */
|
||||
/* otherwise. */
|
||||
/* Only exists for backward compatibility. See below: */
|
||||
|
||||
GC_API int GC_general_register_disappearing_link
|
||||
GC_PROTO((GC_PTR * /* link */, GC_PTR obj));
|
||||
/* A slight generalization of the above. *link is */
|
||||
/* cleared when obj first becomes inaccessible. This */
|
||||
/* can be used to implement weak pointers easily and */
|
||||
/* safely. Typically link will point to a location */
|
||||
/* holding a disguised pointer to obj. (A pointer */
|
||||
/* inside an "atomic" object is effectively */
|
||||
/* disguised.) In this way soft */
|
||||
/* pointers are broken before any object */
|
||||
/* reachable from them are finalized. Each link */
|
||||
/* May be registered only once, i.e. with one obj */
|
||||
/* value. This was added after a long email discussion */
|
||||
/* with John Ellis. */
|
||||
/* Obj must be a pointer to the first word of an object */
|
||||
/* we allocated. It is unsafe to explicitly deallocate */
|
||||
/* the object containing link. Explicitly deallocating */
|
||||
/* obj may or may not cause link to eventually be */
|
||||
/* cleared. */
|
||||
GC_API int GC_unregister_disappearing_link GC_PROTO((GC_PTR * /* link */));
|
||||
/* Returns 0 if link was not actually registered. */
|
||||
/* Undoes a registration by either of the above two */
|
||||
/* routines. */
|
||||
|
||||
/* Auxiliary fns to make finalization work correctly with displaced */
|
||||
/* pointers introduced by the debugging allocators. */
|
||||
GC_API GC_PTR GC_make_closure GC_PROTO((GC_finalization_proc fn, GC_PTR data));
|
||||
GC_API void GC_debug_invoke_finalizer GC_PROTO((GC_PTR obj, GC_PTR data));
|
||||
|
||||
GC_API int GC_invoke_finalizers GC_PROTO((void));
|
||||
/* Run finalizers for all objects that are ready to */
|
||||
/* be finalized. Return the number of finalizers */
|
||||
/* that were run. Normally this is also called */
|
||||
/* implicitly during some allocations. If */
|
||||
/* GC-finalize_on_demand is nonzero, it must be called */
|
||||
/* explicitly. */
|
||||
|
||||
/* GC_set_warn_proc can be used to redirect or filter warning messages. */
|
||||
/* p may not be a NULL pointer. */
|
||||
typedef void (*GC_warn_proc) GC_PROTO((char *msg, GC_word arg));
|
||||
GC_API GC_warn_proc GC_set_warn_proc GC_PROTO((GC_warn_proc p));
|
||||
/* Returns old warning procedure. */
|
||||
|
||||
/* The following is intended to be used by a higher level */
|
||||
/* (e.g. cedar-like) finalization facility. It is expected */
|
||||
/* that finalization code will arrange for hidden pointers to */
|
||||
/* disappear. Otherwise objects can be accessed after they */
|
||||
/* have been collected. */
|
||||
/* Note that putting pointers in atomic objects or in */
|
||||
/* nonpointer slots of "typed" objects is equivalent to */
|
||||
/* disguising them in this way, and may have other advantages. */
|
||||
# if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
|
||||
typedef GC_word GC_hidden_pointer;
|
||||
# define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
|
||||
# define REVEAL_POINTER(p) ((GC_PTR)(HIDE_POINTER(p)))
|
||||
/* Converting a hidden pointer to a real pointer requires verifying */
|
||||
/* that the object still exists. This involves acquiring the */
|
||||
/* allocator lock to avoid a race with the collector. */
|
||||
# endif /* I_HIDE_POINTERS */
|
||||
|
||||
typedef GC_PTR (*GC_fn_type) GC_PROTO((GC_PTR client_data));
|
||||
GC_API GC_PTR GC_call_with_alloc_lock
|
||||
GC_PROTO((GC_fn_type fn, GC_PTR client_data));
|
||||
|
||||
/* Check that p and q point to the same object. */
|
||||
/* Fail conspicuously if they don't. */
|
||||
/* Returns the first argument. */
|
||||
/* Succeeds if neither p nor q points to the heap. */
|
||||
/* May succeed if both p and q point to between heap objects. */
|
||||
GC_API GC_PTR GC_same_obj GC_PROTO((GC_PTR p, GC_PTR q));
|
||||
|
||||
/* Checked pointer pre- and post- increment operations. Note that */
|
||||
/* the second argument is in units of bytes, not multiples of the */
|
||||
/* object size. This should either be invoked from a macro, or the */
|
||||
/* call should be automatically generated. */
|
||||
GC_API GC_PTR GC_pre_incr GC_PROTO((GC_PTR *p, size_t how_much));
|
||||
GC_API GC_PTR GC_post_incr GC_PROTO((GC_PTR *p, size_t how_much));
|
||||
|
||||
/* Check that p is visible */
|
||||
/* to the collector as a possibly pointer containing location. */
|
||||
/* If it isn't fail conspicuously. */
|
||||
/* Returns the argument in all cases. May erroneously succeed */
|
||||
/* in hard cases. (This is intended for debugging use with */
|
||||
/* untyped allocations. The idea is that it should be possible, though */
|
||||
/* slow, to add such a call to all indirect pointer stores.) */
|
||||
/* Currently useless for multithreaded worlds. */
|
||||
GC_API GC_PTR GC_is_visible GC_PROTO((GC_PTR p));
|
||||
|
||||
/* Check that if p is a pointer to a heap page, then it points to */
|
||||
/* a valid displacement within a heap object. */
|
||||
/* Fail conspicuously if this property does not hold. */
|
||||
/* Uninteresting with ALL_INTERIOR_POINTERS. */
|
||||
/* Always returns its argument. */
|
||||
GC_API GC_PTR GC_is_valid_displacement GC_PROTO((GC_PTR p));
|
||||
|
||||
/* Safer, but slow, pointer addition. Probably useful mainly with */
|
||||
/* a preprocessor. Useful only for heap pointers. */
|
||||
#ifdef GC_DEBUG
|
||||
# define GC_PTR_ADD3(x, n, type_of_result) \
|
||||
((type_of_result)GC_same_obj((x)+(n), (x)))
|
||||
# define GC_PRE_INCR3(x, n, type_of_result) \
|
||||
((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
|
||||
# define GC_POST_INCR2(x, type_of_result) \
|
||||
((type_of_result)GC_post_incr(&(x), sizeof(*x))
|
||||
# ifdef __GNUC__
|
||||
# define GC_PTR_ADD(x, n) \
|
||||
GC_PTR_ADD3(x, n, typeof(x))
|
||||
# define GC_PRE_INCR(x, n) \
|
||||
GC_PRE_INCR3(x, n, typeof(x))
|
||||
# define GC_POST_INCR(x, n) \
|
||||
GC_POST_INCR3(x, typeof(x))
|
||||
# else
|
||||
/* We can't do this right without typeof, which ANSI */
|
||||
/* decided was not sufficiently useful. Repeatedly */
|
||||
/* mentioning the arguments seems too dangerous to be */
|
||||
/* useful. So does not casting the result. */
|
||||
# define GC_PTR_ADD(x, n) ((x)+(n))
|
||||
# endif
|
||||
#else /* !GC_DEBUG */
|
||||
# define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
|
||||
# define GC_PTR_ADD(x, n) ((x)+(n))
|
||||
# define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
|
||||
# define GC_PRE_INCR(x, n) ((x) += (n))
|
||||
# define GC_POST_INCR2(x, n, type_of_result) ((x)++)
|
||||
# define GC_POST_INCR(x, n) ((x)++)
|
||||
#endif
|
||||
|
||||
/* Safer assignment of a pointer to a nonstack location. */
|
||||
#ifdef GC_DEBUG
|
||||
# ifdef __STDC__
|
||||
# define GC_PTR_STORE(p, q) \
|
||||
(*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
|
||||
# else
|
||||
# define GC_PTR_STORE(p, q) \
|
||||
(*(char **)GC_is_visible(p) = GC_is_valid_displacement(q))
|
||||
# endif
|
||||
#else /* !GC_DEBUG */
|
||||
# define GC_PTR_STORE(p, q) *((p) = (q))
|
||||
#endif
|
||||
|
||||
/* Fynctions called to report pointer checking errors */
|
||||
GC_API void (*GC_same_obj_print_proc) GC_PROTO((GC_PTR p, GC_PTR q));
|
||||
|
||||
GC_API void (*GC_is_valid_displacement_print_proc)
|
||||
GC_PROTO((GC_PTR p));
|
||||
|
||||
GC_API void (*GC_is_visible_print_proc)
|
||||
GC_PROTO((GC_PTR p));
|
||||
|
||||
#if defined(_SOLARIS_PTHREADS) && !defined(SOLARIS_THREADS)
|
||||
# define SOLARIS_THREADS
|
||||
#endif
|
||||
|
||||
#ifdef SOLARIS_THREADS
|
||||
/* We need to intercept calls to many of the threads primitives, so */
|
||||
/* that we can locate thread stacks and stop the world. */
|
||||
/* Note also that the collector cannot see thread specific data. */
|
||||
/* Thread specific data should generally consist of pointers to */
|
||||
/* uncollectable objects, which are deallocated using the destructor */
|
||||
/* facility in thr_keycreate. */
|
||||
# include <thread.h>
|
||||
# include <signal.h>
|
||||
int GC_thr_create(void *stack_base, size_t stack_size,
|
||||
void *(*start_routine)(void *), void *arg, long flags,
|
||||
thread_t *new_thread);
|
||||
int GC_thr_join(thread_t wait_for, thread_t *departed, void **status);
|
||||
int GC_thr_suspend(thread_t target_thread);
|
||||
int GC_thr_continue(thread_t target_thread);
|
||||
void * GC_dlopen(const char *path, int mode);
|
||||
|
||||
# ifdef _SOLARIS_PTHREADS
|
||||
# include <pthread.h>
|
||||
extern int GC_pthread_create(pthread_t *new_thread,
|
||||
const pthread_attr_t *attr,
|
||||
void * (*thread_execp)(void *), void *arg);
|
||||
extern int GC_pthread_join(pthread_t wait_for, void **status);
|
||||
|
||||
# undef thread_t
|
||||
|
||||
# define pthread_join GC_pthread_join
|
||||
# define pthread_create GC_pthread_create
|
||||
#endif
|
||||
|
||||
# define thr_create GC_thr_create
|
||||
# define thr_join GC_thr_join
|
||||
# define thr_suspend GC_thr_suspend
|
||||
# define thr_continue GC_thr_continue
|
||||
# define dlopen GC_dlopen
|
||||
|
||||
# endif /* SOLARIS_THREADS */
|
||||
|
||||
|
||||
#if defined(IRIX_THREADS) || defined(LINUX_THREADS)
|
||||
/* We treat these similarly. */
|
||||
# include <pthread.h>
|
||||
# include <signal.h>
|
||||
|
||||
int GC_pthread_create(pthread_t *new_thread,
|
||||
const pthread_attr_t *attr,
|
||||
void *(*start_routine)(void *), void *arg);
|
||||
int GC_pthread_sigmask(int how, const sigset_t *set, sigset_t *oset);
|
||||
int GC_pthread_join(pthread_t thread, void **retval);
|
||||
|
||||
# define pthread_create GC_pthread_create
|
||||
# define pthread_sigmask GC_pthread_sigmask
|
||||
# define pthread_join GC_pthread_join
|
||||
|
||||
#endif /* IRIX_THREADS || LINUX_THREADS */
|
||||
|
||||
# if defined(PCR) || defined(SOLARIS_THREADS) || defined(WIN32_THREADS) || \
|
||||
defined(IRIX_THREADS) || defined(LINUX_THREADS) || \
|
||||
defined(IRIX_JDK_THREADS)
|
||||
/* Any flavor of threads except SRC_M3. */
|
||||
/* This returns a list of objects, linked through their first */
|
||||
/* word. Its use can greatly reduce lock contention problems, since */
|
||||
/* the allocation lock can be acquired and released many fewer times. */
|
||||
/* lb must be large enough to hold the pointer field. */
|
||||
GC_PTR GC_malloc_many(size_t lb);
|
||||
#define GC_NEXT(p) (*(GC_PTR *)(p)) /* Retrieve the next element */
|
||||
/* in returned list. */
|
||||
extern void GC_thr_init(); /* Needed for Solaris/X86 */
|
||||
|
||||
#endif /* THREADS && !SRC_M3 */
|
||||
|
||||
/*
|
||||
* If you are planning on putting
|
||||
* the collector in a SunOS 5 dynamic library, you need to call GC_INIT()
|
||||
* from the statically loaded program section.
|
||||
* This circumvents a Solaris 2.X (X<=4) linker bug.
|
||||
*/
|
||||
#if defined(sparc) || defined(__sparc)
|
||||
# define GC_INIT() { extern end, etext; \
|
||||
GC_noop(&end, &etext); }
|
||||
#else
|
||||
# if defined(__CYGWIN32__) && defined(GC_USE_DLL)
|
||||
/*
|
||||
* Similarly gnu-win32 DLLs need explicit initialization
|
||||
*/
|
||||
# define GC_INIT() { GC_add_roots(DATASTART, DATAEND); }
|
||||
# else
|
||||
# define GC_INIT()
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if (defined(_MSDOS) || defined(_MSC_VER)) && (_M_IX86 >= 300) \
|
||||
|| defined(_WIN32)
|
||||
/* win32S may not free all resources on process exit. */
|
||||
/* This explicitly deallocates the heap. */
|
||||
GC_API void GC_win32_free_heap ();
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* end of extern "C" */
|
||||
#endif
|
||||
|
||||
#endif /* _GC_H */
|
||||
380
gc/include/gc_alloc.h
Normal file
380
gc/include/gc_alloc.h
Normal file
@@ -0,0 +1,380 @@
|
||||
/*
|
||||
* Copyright (c) 1996-1998 by Silicon Graphics. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*/
|
||||
|
||||
//
|
||||
// This is a C++ header file that is intended to replace the SGI STL
|
||||
// alloc.h. This assumes SGI STL version < 3.0.
|
||||
//
|
||||
// This assumes the collector has been compiled with -DATOMIC_UNCOLLECTABLE
|
||||
// and -DALL_INTERIOR_POINTERS. We also recommend
|
||||
// -DREDIRECT_MALLOC=GC_uncollectable_malloc.
|
||||
//
|
||||
// Some of this could be faster in the explicit deallocation case. In particular,
|
||||
// we spend too much time clearing objects on the free lists. That could be avoided.
|
||||
//
|
||||
// This uses template classes with static members, and hence does not work
|
||||
// with g++ 2.7.2 and earlier.
|
||||
//
|
||||
|
||||
#include "gc.h"
|
||||
|
||||
#ifndef GC_ALLOC_H
|
||||
|
||||
#define GC_ALLOC_H
|
||||
#define __ALLOC_H // Prevent inclusion of the default version. Ugly.
|
||||
#define __SGI_STL_ALLOC_H
|
||||
#define __SGI_STL_INTERNAL_ALLOC_H
|
||||
|
||||
#ifndef __ALLOC
|
||||
# define __ALLOC alloc
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
|
||||
// The following is just replicated from the conventional SGI alloc.h:
|
||||
|
||||
template<class T, class alloc>
|
||||
class simple_alloc {
|
||||
|
||||
public:
|
||||
static T *allocate(size_t n)
|
||||
{ return 0 == n? 0 : (T*) alloc::allocate(n * sizeof (T)); }
|
||||
static T *allocate(void)
|
||||
{ return (T*) alloc::allocate(sizeof (T)); }
|
||||
static void deallocate(T *p, size_t n)
|
||||
{ if (0 != n) alloc::deallocate(p, n * sizeof (T)); }
|
||||
static void deallocate(T *p)
|
||||
{ alloc::deallocate(p, sizeof (T)); }
|
||||
};
|
||||
|
||||
#include "gc.h"
|
||||
|
||||
// The following need to match collector data structures.
|
||||
// We can't include gc_priv.h, since that pulls in way too much stuff.
|
||||
// This should eventually be factored out into another include file.
|
||||
|
||||
extern "C" {
|
||||
extern void ** const GC_objfreelist_ptr;
|
||||
extern void ** const GC_aobjfreelist_ptr;
|
||||
extern void ** const GC_uobjfreelist_ptr;
|
||||
extern void ** const GC_auobjfreelist_ptr;
|
||||
|
||||
extern void GC_incr_words_allocd(size_t words);
|
||||
extern void GC_incr_mem_freed(size_t words);
|
||||
|
||||
extern char * GC_generic_malloc_words_small(size_t word, int kind);
|
||||
}
|
||||
|
||||
// Object kinds; must match PTRFREE, NORMAL, UNCOLLECTABLE, and
|
||||
// AUNCOLLECTABLE in gc_priv.h.
|
||||
|
||||
enum { GC_PTRFREE = 0, GC_NORMAL = 1, GC_UNCOLLECTABLE = 2,
|
||||
GC_AUNCOLLECTABLE = 3 };
|
||||
|
||||
enum { GC_max_fast_bytes = 255 };
|
||||
|
||||
enum { GC_bytes_per_word = sizeof(char *) };
|
||||
|
||||
enum { GC_byte_alignment = 8 };
|
||||
|
||||
enum { GC_word_alignment = GC_byte_alignment/GC_bytes_per_word };
|
||||
|
||||
inline void * &GC_obj_link(void * p)
|
||||
{ return *(void **)p; }
|
||||
|
||||
// Compute a number of words >= n+1 bytes.
|
||||
// The +1 allows for pointers one past the end.
|
||||
inline size_t GC_round_up(size_t n)
|
||||
{
|
||||
return ((n + GC_byte_alignment)/GC_byte_alignment)*GC_word_alignment;
|
||||
}
|
||||
|
||||
// The same but don't allow for extra byte.
|
||||
inline size_t GC_round_up_uncollectable(size_t n)
|
||||
{
|
||||
return ((n + GC_byte_alignment - 1)/GC_byte_alignment)*GC_word_alignment;
|
||||
}
|
||||
|
||||
template <int dummy>
|
||||
class GC_aux_template {
|
||||
public:
|
||||
// File local count of allocated words. Occasionally this is
|
||||
// added into the global count. A separate count is necessary since the
|
||||
// real one must be updated with a procedure call.
|
||||
static size_t GC_words_recently_allocd;
|
||||
|
||||
// Same for uncollectable mmory. Not yet reflected in either
|
||||
// GC_words_recently_allocd or GC_non_gc_bytes.
|
||||
static size_t GC_uncollectable_words_recently_allocd;
|
||||
|
||||
// Similar counter for explicitly deallocated memory.
|
||||
static size_t GC_mem_recently_freed;
|
||||
|
||||
// Again for uncollectable memory.
|
||||
static size_t GC_uncollectable_mem_recently_freed;
|
||||
|
||||
static void * GC_out_of_line_malloc(size_t nwords, int kind);
|
||||
};
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_words_recently_allocd = 0;
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_uncollectable_words_recently_allocd = 0;
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_mem_recently_freed = 0;
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_uncollectable_mem_recently_freed = 0;
|
||||
|
||||
template <int dummy>
|
||||
void * GC_aux_template<dummy>::GC_out_of_line_malloc(size_t nwords, int kind)
|
||||
{
|
||||
GC_words_recently_allocd += GC_uncollectable_words_recently_allocd;
|
||||
GC_non_gc_bytes +=
|
||||
GC_bytes_per_word * GC_uncollectable_words_recently_allocd;
|
||||
GC_uncollectable_words_recently_allocd = 0;
|
||||
|
||||
GC_mem_recently_freed += GC_uncollectable_mem_recently_freed;
|
||||
GC_non_gc_bytes -=
|
||||
GC_bytes_per_word * GC_uncollectable_mem_recently_freed;
|
||||
GC_uncollectable_mem_recently_freed = 0;
|
||||
|
||||
GC_incr_words_allocd(GC_words_recently_allocd);
|
||||
GC_words_recently_allocd = 0;
|
||||
|
||||
GC_incr_mem_freed(GC_mem_recently_freed);
|
||||
GC_mem_recently_freed = 0;
|
||||
|
||||
return GC_generic_malloc_words_small(nwords, kind);
|
||||
}
|
||||
|
||||
typedef GC_aux_template<0> GC_aux;
|
||||
|
||||
// A fast, single-threaded, garbage-collected allocator
|
||||
// We assume the first word will be immediately overwritten.
|
||||
// In this version, deallocation is not a noop, and explicit
|
||||
// deallocation is likely to help performance.
|
||||
template <int dummy>
|
||||
class single_client_gc_alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc(n);
|
||||
flh = GC_objfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_NORMAL);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc_atomic(n);
|
||||
flh = GC_aobjfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_PTRFREE);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_objfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
memset((char *)p + GC_bytes_per_word, 0,
|
||||
GC_bytes_per_word * (nwords - 1));
|
||||
*flh = p;
|
||||
GC_aux::GC_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
static void ptr_free_deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_aobjfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
*flh = p;
|
||||
GC_aux::GC_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
typedef single_client_gc_alloc_template<0> single_client_gc_alloc;
|
||||
|
||||
// Once more, for uncollectable objects.
|
||||
template <int dummy>
|
||||
class single_client_alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc_uncollectable(n);
|
||||
flh = GC_uobjfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_UNCOLLECTABLE);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_uncollectable_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc_atomic_uncollectable(n);
|
||||
flh = GC_auobjfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_AUNCOLLECTABLE);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_uncollectable_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_uobjfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
*flh = p;
|
||||
GC_aux::GC_uncollectable_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
static void ptr_free_deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_auobjfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
*flh = p;
|
||||
GC_aux::GC_uncollectable_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
typedef single_client_alloc_template<0> single_client_alloc;
|
||||
|
||||
template < int dummy >
|
||||
class gc_alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n) { return GC_malloc(n); }
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{ return GC_malloc_atomic(n); }
|
||||
static void deallocate(void *, size_t) { }
|
||||
static void ptr_free_deallocate(void *, size_t) { }
|
||||
};
|
||||
|
||||
typedef gc_alloc_template < 0 > gc_alloc;
|
||||
|
||||
template < int dummy >
|
||||
class alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n) { return GC_malloc_uncollectable(n); }
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{ return GC_malloc_atomic_uncollectable(n); }
|
||||
static void deallocate(void *p, size_t) { GC_free(p); }
|
||||
static void ptr_free_deallocate(void *p, size_t) { GC_free(p); }
|
||||
};
|
||||
|
||||
typedef alloc_template < 0 > alloc;
|
||||
|
||||
#ifdef _SGI_SOURCE
|
||||
|
||||
// We want to specialize simple_alloc so that it does the right thing
|
||||
// for all pointerfree types. At the moment there is no portable way to
|
||||
// even approximate that. The following approximation should work for
|
||||
// SGI compilers, and perhaps some others.
|
||||
|
||||
# define __GC_SPECIALIZE(T,alloc) \
|
||||
class simple_alloc<T, alloc> { \
|
||||
public: \
|
||||
static T *allocate(size_t n) \
|
||||
{ return 0 == n? 0 : \
|
||||
(T*) alloc::ptr_free_allocate(n * sizeof (T)); } \
|
||||
static T *allocate(void) \
|
||||
{ return (T*) alloc::ptr_free_allocate(sizeof (T)); } \
|
||||
static void deallocate(T *p, size_t n) \
|
||||
{ if (0 != n) alloc::ptr_free_deallocate(p, n * sizeof (T)); } \
|
||||
static void deallocate(T *p) \
|
||||
{ alloc::ptr_free_deallocate(p, sizeof (T)); } \
|
||||
};
|
||||
|
||||
__GC_SPECIALIZE(char, gc_alloc)
|
||||
__GC_SPECIALIZE(int, gc_alloc)
|
||||
__GC_SPECIALIZE(unsigned, gc_alloc)
|
||||
__GC_SPECIALIZE(float, gc_alloc)
|
||||
__GC_SPECIALIZE(double, gc_alloc)
|
||||
|
||||
__GC_SPECIALIZE(char, alloc)
|
||||
__GC_SPECIALIZE(int, alloc)
|
||||
__GC_SPECIALIZE(unsigned, alloc)
|
||||
__GC_SPECIALIZE(float, alloc)
|
||||
__GC_SPECIALIZE(double, alloc)
|
||||
|
||||
__GC_SPECIALIZE(char, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(int, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(unsigned, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(float, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(double, single_client_gc_alloc)
|
||||
|
||||
__GC_SPECIALIZE(char, single_client_alloc)
|
||||
__GC_SPECIALIZE(int, single_client_alloc)
|
||||
__GC_SPECIALIZE(unsigned, single_client_alloc)
|
||||
__GC_SPECIALIZE(float, single_client_alloc)
|
||||
__GC_SPECIALIZE(double, single_client_alloc)
|
||||
|
||||
#ifdef __STL_USE_STD_ALLOCATORS
|
||||
|
||||
???copy stuff from stl_alloc.h or remove it to a different file ???
|
||||
|
||||
#endif /* __STL_USE_STD_ALLOCATORS */
|
||||
|
||||
#endif /* _SGI_SOURCE */
|
||||
|
||||
#endif /* GC_ALLOC_H */
|
||||
290
gc/include/gc_cpp.h
Normal file
290
gc/include/gc_cpp.h
Normal file
@@ -0,0 +1,290 @@
|
||||
#ifndef GC_CPP_H
|
||||
#define GC_CPP_H
|
||||
/****************************************************************************
|
||||
Copyright (c) 1994 by Xerox Corporation. All rights reserved.
|
||||
|
||||
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
|
||||
Permission is hereby granted to use or copy this program for any
|
||||
purpose, provided the above notices are retained on all copies.
|
||||
Permission to modify the code and to distribute modified code is
|
||||
granted, provided the above notices are retained, and a notice that
|
||||
the code was modified is included with the above copyright notice.
|
||||
****************************************************************************
|
||||
|
||||
C++ Interface to the Boehm Collector
|
||||
|
||||
John R. Ellis and Jesse Hull
|
||||
Last modified on Mon Jul 24 15:43:42 PDT 1995 by ellis
|
||||
|
||||
This interface provides access to the Boehm collector. It provides
|
||||
basic facilities similar to those described in "Safe, Efficient
|
||||
Garbage Collection for C++", by John R. Elis and David L. Detlefs
|
||||
(ftp.parc.xerox.com:/pub/ellis/gc).
|
||||
|
||||
All heap-allocated objects are either "collectable" or
|
||||
"uncollectable". Programs must explicitly delete uncollectable
|
||||
objects, whereas the garbage collector will automatically delete
|
||||
collectable objects when it discovers them to be inaccessible.
|
||||
Collectable objects may freely point at uncollectable objects and vice
|
||||
versa.
|
||||
|
||||
Objects allocated with the built-in "::operator new" are uncollectable.
|
||||
|
||||
Objects derived from class "gc" are collectable. For example:
|
||||
|
||||
class A: public gc {...};
|
||||
A* a = new A; // a is collectable.
|
||||
|
||||
Collectable instances of non-class types can be allocated using the GC
|
||||
placement:
|
||||
|
||||
typedef int A[ 10 ];
|
||||
A* a = new (GC) A;
|
||||
|
||||
Uncollectable instances of classes derived from "gc" can be allocated
|
||||
using the NoGC placement:
|
||||
|
||||
class A: public gc {...};
|
||||
A* a = new (NoGC) A; // a is uncollectable.
|
||||
|
||||
Both uncollectable and collectable objects can be explicitly deleted
|
||||
with "delete", which invokes an object's destructors and frees its
|
||||
storage immediately.
|
||||
|
||||
A collectable object may have a clean-up function, which will be
|
||||
invoked when the collector discovers the object to be inaccessible.
|
||||
An object derived from "gc_cleanup" or containing a member derived
|
||||
from "gc_cleanup" has a default clean-up function that invokes the
|
||||
object's destructors. Explicit clean-up functions may be specified as
|
||||
an additional placement argument:
|
||||
|
||||
A* a = ::new (GC, MyCleanup) A;
|
||||
|
||||
An object is considered "accessible" by the collector if it can be
|
||||
reached by a path of pointers from static variables, automatic
|
||||
variables of active functions, or from some object with clean-up
|
||||
enabled; pointers from an object to itself are ignored.
|
||||
|
||||
Thus, if objects A and B both have clean-up functions, and A points at
|
||||
B, B is considered accessible. After A's clean-up is invoked and its
|
||||
storage released, B will then become inaccessible and will have its
|
||||
clean-up invoked. If A points at B and B points to A, forming a
|
||||
cycle, then that's considered a storage leak, and neither will be
|
||||
collectable. See the interface gc.h for low-level facilities for
|
||||
handling such cycles of objects with clean-up.
|
||||
|
||||
The collector cannot guarrantee that it will find all inaccessible
|
||||
objects. In practice, it finds almost all of them.
|
||||
|
||||
|
||||
Cautions:
|
||||
|
||||
1. Be sure the collector has been augmented with "make c++".
|
||||
|
||||
2. If your compiler supports the new "operator new[]" syntax, then
|
||||
add -DOPERATOR_NEW_ARRAY to the Makefile.
|
||||
|
||||
If your compiler doesn't support "operator new[]", beware that an
|
||||
array of type T, where T is derived from "gc", may or may not be
|
||||
allocated as a collectable object (it depends on the compiler). Use
|
||||
the explicit GC placement to make the array collectable. For example:
|
||||
|
||||
class A: public gc {...};
|
||||
A* a1 = new A[ 10 ]; // collectable or uncollectable?
|
||||
A* a2 = new (GC) A[ 10 ]; // collectable
|
||||
|
||||
3. The destructors of collectable arrays of objects derived from
|
||||
"gc_cleanup" will not be invoked properly. For example:
|
||||
|
||||
class A: public gc_cleanup {...};
|
||||
A* a = new (GC) A[ 10 ]; // destructors not invoked correctly
|
||||
|
||||
Typically, only the destructor for the first element of the array will
|
||||
be invoked when the array is garbage-collected. To get all the
|
||||
destructors of any array executed, you must supply an explicit
|
||||
clean-up function:
|
||||
|
||||
A* a = new (GC, MyCleanUp) A[ 10 ];
|
||||
|
||||
(Implementing clean-up of arrays correctly, portably, and in a way
|
||||
that preserves the correct exception semantics requires a language
|
||||
extension, e.g. the "gc" keyword.)
|
||||
|
||||
4. Compiler bugs:
|
||||
|
||||
* Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the
|
||||
destructors of classes derived from gc_cleanup won't be invoked.
|
||||
You'll have to explicitly register a clean-up function with
|
||||
new-placement syntax.
|
||||
|
||||
* Evidently cfront 3.0 does not allow destructors to be explicitly
|
||||
invoked using the ANSI-conforming syntax t->~T(). If you're using
|
||||
cfront 3.0, you'll have to comment out the class gc_cleanup, which
|
||||
uses explicit invocation.
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
#include "gc.h"
|
||||
|
||||
#ifndef THINK_CPLUS
|
||||
#define _cdecl
|
||||
#endif
|
||||
|
||||
#if ! defined( OPERATOR_NEW_ARRAY ) \
|
||||
&& (__BORLANDC__ >= 0x450 || (__GNUC__ >= 2 && __GNUC_MINOR__ >= 6) \
|
||||
|| __WATCOMC__ >= 1050)
|
||||
# define OPERATOR_NEW_ARRAY
|
||||
#endif
|
||||
|
||||
enum GCPlacement {GC, NoGC, PointerFreeGC};
|
||||
|
||||
class gc {public:
|
||||
inline void* operator new( size_t size );
|
||||
inline void* operator new( size_t size, GCPlacement gcp );
|
||||
inline void operator delete( void* obj );
|
||||
|
||||
#ifdef OPERATOR_NEW_ARRAY
|
||||
inline void* operator new[]( size_t size );
|
||||
inline void* operator new[]( size_t size, GCPlacement gcp );
|
||||
inline void operator delete[]( void* obj );
|
||||
#endif /* OPERATOR_NEW_ARRAY */
|
||||
};
|
||||
/*
|
||||
Instances of classes derived from "gc" will be allocated in the
|
||||
collected heap by default, unless an explicit NoGC placement is
|
||||
specified. */
|
||||
|
||||
class gc_cleanup: virtual public gc {public:
|
||||
inline gc_cleanup();
|
||||
inline virtual ~gc_cleanup();
|
||||
private:
|
||||
inline static void _cdecl cleanup( void* obj, void* clientData );};
|
||||
/*
|
||||
Instances of classes derived from "gc_cleanup" will be allocated
|
||||
in the collected heap by default. When the collector discovers an
|
||||
inaccessible object derived from "gc_cleanup" or containing a
|
||||
member derived from "gc_cleanup", its destructors will be
|
||||
invoked. */
|
||||
|
||||
extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );}
|
||||
|
||||
inline void* operator new(
|
||||
size_t size,
|
||||
GCPlacement gcp,
|
||||
GCCleanUpFunc cleanup = 0,
|
||||
void* clientData = 0 );
|
||||
/*
|
||||
Allocates a collectable or uncollected object, according to the
|
||||
value of "gcp".
|
||||
|
||||
For collectable objects, if "cleanup" is non-null, then when the
|
||||
allocated object "obj" becomes inaccessible, the collector will
|
||||
invoke the function "cleanup( obj, clientData )" but will not
|
||||
invoke the object's destructors. It is an error to explicitly
|
||||
delete an object allocated with a non-null "cleanup".
|
||||
|
||||
It is an error to specify a non-null "cleanup" with NoGC or for
|
||||
classes derived from "gc_cleanup" or containing members derived
|
||||
from "gc_cleanup". */
|
||||
|
||||
#ifdef OPERATOR_NEW_ARRAY
|
||||
|
||||
inline void* operator new[](
|
||||
size_t size,
|
||||
GCPlacement gcp,
|
||||
GCCleanUpFunc cleanup = 0,
|
||||
void* clientData = 0 );
|
||||
/*
|
||||
The operator new for arrays, identical to the above. */
|
||||
|
||||
#endif /* OPERATOR_NEW_ARRAY */
|
||||
|
||||
/****************************************************************************
|
||||
|
||||
Inline implementation
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
inline void* gc::operator new( size_t size ) {
|
||||
return GC_MALLOC( size );}
|
||||
|
||||
inline void* gc::operator new( size_t size, GCPlacement gcp ) {
|
||||
if (gcp == GC)
|
||||
return GC_MALLOC( size );
|
||||
else if (gcp == PointerFreeGC)
|
||||
return GC_MALLOC_ATOMIC( size );
|
||||
else
|
||||
return GC_MALLOC_UNCOLLECTABLE( size );}
|
||||
|
||||
inline void gc::operator delete( void* obj ) {
|
||||
GC_FREE( obj );}
|
||||
|
||||
|
||||
#ifdef OPERATOR_NEW_ARRAY
|
||||
|
||||
inline void* gc::operator new[]( size_t size ) {
|
||||
return gc::operator new( size );}
|
||||
|
||||
inline void* gc::operator new[]( size_t size, GCPlacement gcp ) {
|
||||
return gc::operator new( size, gcp );}
|
||||
|
||||
inline void gc::operator delete[]( void* obj ) {
|
||||
gc::operator delete( obj );}
|
||||
|
||||
#endif /* OPERATOR_NEW_ARRAY */
|
||||
|
||||
|
||||
inline gc_cleanup::~gc_cleanup() {
|
||||
GC_REGISTER_FINALIZER_IGNORE_SELF( GC_base(this), 0, 0, 0, 0 );}
|
||||
|
||||
inline void gc_cleanup::cleanup( void* obj, void* displ ) {
|
||||
((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();}
|
||||
|
||||
inline gc_cleanup::gc_cleanup() {
|
||||
GC_finalization_proc oldProc;
|
||||
void* oldData;
|
||||
void* base = GC_base( (void *) this );
|
||||
if (0 == base) return;
|
||||
GC_REGISTER_FINALIZER_IGNORE_SELF(
|
||||
base, cleanup, (void*) ((char*) this - (char*) base),
|
||||
&oldProc, &oldData );
|
||||
if (0 != oldProc) {
|
||||
GC_REGISTER_FINALIZER_IGNORE_SELF( base, oldProc, oldData, 0, 0 );}}
|
||||
|
||||
inline void* operator new(
|
||||
size_t size,
|
||||
GCPlacement gcp,
|
||||
GCCleanUpFunc cleanup,
|
||||
void* clientData )
|
||||
{
|
||||
void* obj;
|
||||
|
||||
if (gcp == GC) {
|
||||
obj = GC_MALLOC( size );
|
||||
if (cleanup != 0)
|
||||
GC_REGISTER_FINALIZER_IGNORE_SELF(
|
||||
obj, cleanup, clientData, 0, 0 );}
|
||||
else if (gcp == PointerFreeGC) {
|
||||
obj = GC_MALLOC_ATOMIC( size );}
|
||||
else {
|
||||
obj = GC_MALLOC_UNCOLLECTABLE( size );};
|
||||
return obj;}
|
||||
|
||||
|
||||
#ifdef OPERATOR_NEW_ARRAY
|
||||
|
||||
inline void* operator new[](
|
||||
size_t size,
|
||||
GCPlacement gcp,
|
||||
GCCleanUpFunc cleanup,
|
||||
void* clientData )
|
||||
{
|
||||
return ::operator new( size, gcp, cleanup, clientData );}
|
||||
|
||||
#endif /* OPERATOR_NEW_ARRAY */
|
||||
|
||||
|
||||
#endif /* GC_CPP_H */
|
||||
|
||||
103
gc/include/gc_inl.h
Normal file
103
gc/include/gc_inl.h
Normal file
@@ -0,0 +1,103 @@
|
||||
/*
|
||||
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
||||
* Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*/
|
||||
/* Boehm, October 3, 1995 2:07 pm PDT */
|
||||
|
||||
# ifndef GC_PRIVATE_H
|
||||
# include "private/gc_priv.h"
|
||||
# endif
|
||||
|
||||
/* USE OF THIS FILE IS NOT RECOMMENDED unless the collector has been */
|
||||
/* compiled without -DALL_INTERIOR_POINTERS or with */
|
||||
/* -DDONT_ADD_BYTE_AT_END, or the specified size includes a pointerfree */
|
||||
/* word at the end. In the standard collector configuration, */
|
||||
/* the final word of each object may not be scanned. */
|
||||
/* This is most useful for compilers that generate C. */
|
||||
/* Manual use is hereby discouraged. */
|
||||
|
||||
/* Allocate n words (NOT BYTES). X is made to point to the result. */
|
||||
/* It is assumed that n < MAXOBJSZ, and */
|
||||
/* that n > 0. On machines requiring double word alignment of some */
|
||||
/* data, we also assume that n is 1 or even. This bypasses the */
|
||||
/* MERGE_SIZES mechanism. In order to minimize the number of distinct */
|
||||
/* free lists that are maintained, the caller should ensure that a */
|
||||
/* small number of distinct values of n are used. (The MERGE_SIZES */
|
||||
/* mechanism normally does this by ensuring that only the leading three */
|
||||
/* bits of n may be nonzero. See misc.c for details.) We really */
|
||||
/* recommend this only in cases in which n is a constant, and no */
|
||||
/* locking is required. */
|
||||
/* In that case it may allow the compiler to perform substantial */
|
||||
/* additional optimizations. */
|
||||
# define GC_MALLOC_WORDS(result,n) \
|
||||
{ \
|
||||
register ptr_t op; \
|
||||
register ptr_t *opp; \
|
||||
DCL_LOCK_STATE; \
|
||||
\
|
||||
opp = &(GC_objfreelist[n]); \
|
||||
FASTLOCK(); \
|
||||
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) { \
|
||||
FASTUNLOCK(); \
|
||||
(result) = GC_generic_malloc_words_small((n), NORMAL); \
|
||||
} else { \
|
||||
*opp = obj_link(op); \
|
||||
obj_link(op) = 0; \
|
||||
GC_words_allocd += (n); \
|
||||
FASTUNLOCK(); \
|
||||
(result) = (GC_PTR) op; \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
/* The same for atomic objects: */
|
||||
# define GC_MALLOC_ATOMIC_WORDS(result,n) \
|
||||
{ \
|
||||
register ptr_t op; \
|
||||
register ptr_t *opp; \
|
||||
DCL_LOCK_STATE; \
|
||||
\
|
||||
opp = &(GC_aobjfreelist[n]); \
|
||||
FASTLOCK(); \
|
||||
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) { \
|
||||
FASTUNLOCK(); \
|
||||
(result) = GC_generic_malloc_words_small((n), PTRFREE); \
|
||||
} else { \
|
||||
*opp = obj_link(op); \
|
||||
obj_link(op) = 0; \
|
||||
GC_words_allocd += (n); \
|
||||
FASTUNLOCK(); \
|
||||
(result) = (GC_PTR) op; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* And once more for two word initialized objects: */
|
||||
# define GC_CONS(result, first, second) \
|
||||
{ \
|
||||
register ptr_t op; \
|
||||
register ptr_t *opp; \
|
||||
DCL_LOCK_STATE; \
|
||||
\
|
||||
opp = &(GC_objfreelist[2]); \
|
||||
FASTLOCK(); \
|
||||
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) { \
|
||||
FASTUNLOCK(); \
|
||||
op = GC_generic_malloc_words_small(2, NORMAL); \
|
||||
} else { \
|
||||
*opp = obj_link(op); \
|
||||
GC_words_allocd += 2; \
|
||||
FASTUNLOCK(); \
|
||||
} \
|
||||
((word *)op)[0] = (word)(first); \
|
||||
((word *)op)[1] = (word)(second); \
|
||||
(result) = (GC_PTR) op; \
|
||||
}
|
||||
1
gc/include/gc_inline.h
Normal file
1
gc/include/gc_inline.h
Normal file
@@ -0,0 +1 @@
|
||||
# include "gc_inl.h"
|
||||
91
gc/include/gc_typed.h
Normal file
91
gc/include/gc_typed.h
Normal file
@@ -0,0 +1,91 @@
|
||||
/*
|
||||
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
||||
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
||||
* Copyright 1996 Silicon Graphics. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*/
|
||||
/*
|
||||
* Some simple primitives for allocation with explicit type information.
|
||||
* Facilities for dynamic type inference may be added later.
|
||||
* Should be used only for extremely performance critical applications,
|
||||
* or if conservative collector leakage is otherwise a problem (unlikely).
|
||||
* Note that this is implemented completely separately from the rest
|
||||
* of the collector, and is not linked in unless referenced.
|
||||
* This does not currently support GC_DEBUG in any interesting way.
|
||||
*/
|
||||
/* Boehm, May 19, 1994 2:13 pm PDT */
|
||||
|
||||
#ifndef _GC_TYPED_H
|
||||
# define _GC_TYPED_H
|
||||
# ifndef _GC_H
|
||||
# include "gc.h"
|
||||
# endif
|
||||
|
||||
typedef GC_word * GC_bitmap;
|
||||
/* The least significant bit of the first word is one if */
|
||||
/* the first word in the object may be a pointer. */
|
||||
|
||||
# define GC_get_bit(bm, index) \
|
||||
(((bm)[divWORDSZ(index)] >> modWORDSZ(index)) & 1)
|
||||
# define GC_set_bit(bm, index) \
|
||||
(bm)[divWORDSZ(index)] |= (word)1 << modWORDSZ(index)
|
||||
|
||||
typedef GC_word GC_descr;
|
||||
|
||||
GC_API GC_descr GC_make_descriptor GC_PROTO((GC_bitmap bm, size_t len));
|
||||
/* Return a type descriptor for the object whose layout */
|
||||
/* is described by the argument. */
|
||||
/* The least significant bit of the first word is one */
|
||||
/* if the first word in the object may be a pointer. */
|
||||
/* The second argument specifies the number of */
|
||||
/* meaningful bits in the bitmap. The actual object */
|
||||
/* may be larger (but not smaller). Any additional */
|
||||
/* words in the object are assumed not to contain */
|
||||
/* pointers. */
|
||||
/* Returns a conservative approximation in the */
|
||||
/* (unlikely) case of insufficient memory to build */
|
||||
/* the descriptor. Calls to GC_make_descriptor */
|
||||
/* may consume some amount of a finite resource. This */
|
||||
/* is intended to be called once per type, not once */
|
||||
/* per allocation. */
|
||||
|
||||
GC_API GC_PTR GC_malloc_explicitly_typed
|
||||
GC_PROTO((size_t size_in_bytes, GC_descr d));
|
||||
/* Allocate an object whose layout is described by d. */
|
||||
/* The resulting object MAY NOT BE PASSED TO REALLOC. */
|
||||
|
||||
GC_API GC_PTR GC_malloc_explicitly_typed_ignore_off_page
|
||||
GC_PROTO((size_t size_in_bytes, GC_descr d));
|
||||
|
||||
GC_API GC_PTR GC_calloc_explicitly_typed
|
||||
GC_PROTO((size_t nelements,
|
||||
size_t element_size_in_bytes,
|
||||
GC_descr d));
|
||||
/* Allocate an array of nelements elements, each of the */
|
||||
/* given size, and with the given descriptor. */
|
||||
/* The elemnt size must be a multiple of the byte */
|
||||
/* alignment required for pointers. E.g. on a 32-bit */
|
||||
/* machine with 16-bit aligned pointers, size_in_bytes */
|
||||
/* must be a multiple of 2. */
|
||||
|
||||
#ifdef GC_DEBUG
|
||||
# define GC_MALLOC_EXPLICTLY_TYPED(bytes, d) GC_MALLOC(bytes)
|
||||
# define GC_CALLOC_EXPLICTLY_TYPED(n, bytes, d) GC_MALLOC(n*bytes)
|
||||
#else
|
||||
# define GC_MALLOC_EXPLICTLY_TYPED(bytes, d) \
|
||||
GC_malloc_explicitly_typed(bytes, d)
|
||||
# define GC_CALLOC_EXPLICTLY_TYPED(n, bytes, d) \
|
||||
GC_calloc_explicitly_typed(n, bytes, d)
|
||||
#endif /* !GC_DEBUG */
|
||||
|
||||
|
||||
#endif /* _GC_TYPED_H */
|
||||
|
||||
41
gc/include/javaxfc.h
Normal file
41
gc/include/javaxfc.h
Normal file
@@ -0,0 +1,41 @@
|
||||
# ifndef GC_H
|
||||
# include "gc.h"
|
||||
# endif
|
||||
|
||||
/*
|
||||
* Invoke all remaining finalizers that haven't yet been run.
|
||||
* This is needed for strict compliance with the Java standard,
|
||||
* which can make the runtime guarantee that all finalizers are run.
|
||||
* This is problematic for several reasons:
|
||||
* 1) It means that finalizers, and all methods calle by them,
|
||||
* must be prepared to deal with objects that have been finalized in
|
||||
* spite of the fact that they are still referenced by statically
|
||||
* allocated pointer variables.
|
||||
* 1) It may mean that we get stuck in an infinite loop running
|
||||
* finalizers which create new finalizable objects, though that's
|
||||
* probably unlikely.
|
||||
* Thus this is not recommended for general use.
|
||||
*/
|
||||
void GC_finalize_all();
|
||||
|
||||
/*
|
||||
* A version of GC_register_finalizer that allows the object to be
|
||||
* finalized before the objects it references. This is again error
|
||||
* prone, in that it makes it easy to accidentally reference finalized
|
||||
* objects. Again, recommended only for JVM implementors.
|
||||
*/
|
||||
void GC_register_finalizer_no_order(GC_PTR obj,
|
||||
GC_finalization_proc fn, GC_PTR cd,
|
||||
GC_finalization_proc *ofn, GC_PTR * ocd);
|
||||
|
||||
void GC_debug_register_finalizer_no_order(GC_PTR obj,
|
||||
GC_finalization_proc fn, GC_PTR cd,
|
||||
GC_finalization_proc *ofn, GC_PTR * ocd);
|
||||
|
||||
#ifdef GC_DEBUG
|
||||
# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
|
||||
GC_debug_register_finalizer_no_order(p, f, d, of, od)
|
||||
#else
|
||||
# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
|
||||
GC_register_finalizer_no_order(p, f, d, of, od)
|
||||
#endif
|
||||
7
gc/include/leak_detector.h
Normal file
7
gc/include/leak_detector.h
Normal file
@@ -0,0 +1,7 @@
|
||||
#define GC_DEBUG
|
||||
#include "gc.h"
|
||||
#define malloc(n) GC_MALLOC(n)
|
||||
#define calloc(m,n) GC_MALLOC(m*n)
|
||||
#define free(p) GC_FREE(p)
|
||||
#define realloc(p,n) GC_REALLOC(n)
|
||||
#define CHECK_LEAKS() GC_gcollect()
|
||||
456
gc/include/new_gc_alloc.h
Normal file
456
gc/include/new_gc_alloc.h
Normal file
@@ -0,0 +1,456 @@
|
||||
/*
|
||||
* Copyright (c) 1996-1998 by Silicon Graphics. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*/
|
||||
|
||||
//
|
||||
// This is a revision of gc_alloc.h for SGI STL versions > 3.0
|
||||
// Unlike earlier versions, it supplements the standard "alloc.h"
|
||||
// instead of replacing it.
|
||||
//
|
||||
// This is sloppy about variable names used in header files.
|
||||
// It also doesn't yet understand the new header file names or
|
||||
// namespaces.
|
||||
//
|
||||
// This assumes the collector has been compiled with -DATOMIC_UNCOLLECTABLE
|
||||
// and -DALL_INTERIOR_POINTERS. We also recommend
|
||||
// -DREDIRECT_MALLOC=GC_uncollectable_malloc.
|
||||
//
|
||||
// Some of this could be faster in the explicit deallocation case.
|
||||
// In particular, we spend too much time clearing objects on the
|
||||
// free lists. That could be avoided.
|
||||
//
|
||||
// This uses template classes with static members, and hence does not work
|
||||
// with g++ 2.7.2 and earlier.
|
||||
//
|
||||
// Unlike its predecessor, this one simply defines
|
||||
// gc_alloc
|
||||
// single_client_gc_alloc
|
||||
// traceable_alloc
|
||||
// single_client_traceable_alloc
|
||||
//
|
||||
// It does not redefine alloc. Nor does it change the default allocator,
|
||||
// though the user may wish to do so. (The argument against changing
|
||||
// the default allocator is that it may introduce subtle link compatibility
|
||||
// problems. The argument for changing it is that the usual default
|
||||
// allocator is usually a very bad choice for a garbage collected environment.)
|
||||
//
|
||||
|
||||
#ifndef GC_ALLOC_H
|
||||
|
||||
#include "gc.h"
|
||||
#include <alloc.h>
|
||||
|
||||
#define GC_ALLOC_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
|
||||
// The following need to match collector data structures.
|
||||
// We can't include gc_priv.h, since that pulls in way too much stuff.
|
||||
// This should eventually be factored out into another include file.
|
||||
|
||||
extern "C" {
|
||||
extern void ** const GC_objfreelist_ptr;
|
||||
extern void ** const GC_aobjfreelist_ptr;
|
||||
extern void ** const GC_uobjfreelist_ptr;
|
||||
extern void ** const GC_auobjfreelist_ptr;
|
||||
|
||||
extern void GC_incr_words_allocd(size_t words);
|
||||
extern void GC_incr_mem_freed(size_t words);
|
||||
|
||||
extern char * GC_generic_malloc_words_small(size_t word, int kind);
|
||||
}
|
||||
|
||||
// Object kinds; must match PTRFREE, NORMAL, UNCOLLECTABLE, and
|
||||
// AUNCOLLECTABLE in gc_priv.h.
|
||||
|
||||
enum { GC_PTRFREE = 0, GC_NORMAL = 1, GC_UNCOLLECTABLE = 2,
|
||||
GC_AUNCOLLECTABLE = 3 };
|
||||
|
||||
enum { GC_max_fast_bytes = 255 };
|
||||
|
||||
enum { GC_bytes_per_word = sizeof(char *) };
|
||||
|
||||
enum { GC_byte_alignment = 8 };
|
||||
|
||||
enum { GC_word_alignment = GC_byte_alignment/GC_bytes_per_word };
|
||||
|
||||
inline void * &GC_obj_link(void * p)
|
||||
{ return *(void **)p; }
|
||||
|
||||
// Compute a number of words >= n+1 bytes.
|
||||
// The +1 allows for pointers one past the end.
|
||||
inline size_t GC_round_up(size_t n)
|
||||
{
|
||||
return ((n + GC_byte_alignment)/GC_byte_alignment)*GC_word_alignment;
|
||||
}
|
||||
|
||||
// The same but don't allow for extra byte.
|
||||
inline size_t GC_round_up_uncollectable(size_t n)
|
||||
{
|
||||
return ((n + GC_byte_alignment - 1)/GC_byte_alignment)*GC_word_alignment;
|
||||
}
|
||||
|
||||
template <int dummy>
|
||||
class GC_aux_template {
|
||||
public:
|
||||
// File local count of allocated words. Occasionally this is
|
||||
// added into the global count. A separate count is necessary since the
|
||||
// real one must be updated with a procedure call.
|
||||
static size_t GC_words_recently_allocd;
|
||||
|
||||
// Same for uncollectable mmory. Not yet reflected in either
|
||||
// GC_words_recently_allocd or GC_non_gc_bytes.
|
||||
static size_t GC_uncollectable_words_recently_allocd;
|
||||
|
||||
// Similar counter for explicitly deallocated memory.
|
||||
static size_t GC_mem_recently_freed;
|
||||
|
||||
// Again for uncollectable memory.
|
||||
static size_t GC_uncollectable_mem_recently_freed;
|
||||
|
||||
static void * GC_out_of_line_malloc(size_t nwords, int kind);
|
||||
};
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_words_recently_allocd = 0;
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_uncollectable_words_recently_allocd = 0;
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_mem_recently_freed = 0;
|
||||
|
||||
template <int dummy>
|
||||
size_t GC_aux_template<dummy>::GC_uncollectable_mem_recently_freed = 0;
|
||||
|
||||
template <int dummy>
|
||||
void * GC_aux_template<dummy>::GC_out_of_line_malloc(size_t nwords, int kind)
|
||||
{
|
||||
GC_words_recently_allocd += GC_uncollectable_words_recently_allocd;
|
||||
GC_non_gc_bytes +=
|
||||
GC_bytes_per_word * GC_uncollectable_words_recently_allocd;
|
||||
GC_uncollectable_words_recently_allocd = 0;
|
||||
|
||||
GC_mem_recently_freed += GC_uncollectable_mem_recently_freed;
|
||||
GC_non_gc_bytes -=
|
||||
GC_bytes_per_word * GC_uncollectable_mem_recently_freed;
|
||||
GC_uncollectable_mem_recently_freed = 0;
|
||||
|
||||
GC_incr_words_allocd(GC_words_recently_allocd);
|
||||
GC_words_recently_allocd = 0;
|
||||
|
||||
GC_incr_mem_freed(GC_mem_recently_freed);
|
||||
GC_mem_recently_freed = 0;
|
||||
|
||||
return GC_generic_malloc_words_small(nwords, kind);
|
||||
}
|
||||
|
||||
typedef GC_aux_template<0> GC_aux;
|
||||
|
||||
// A fast, single-threaded, garbage-collected allocator
|
||||
// We assume the first word will be immediately overwritten.
|
||||
// In this version, deallocation is not a noop, and explicit
|
||||
// deallocation is likely to help performance.
|
||||
template <int dummy>
|
||||
class single_client_gc_alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc(n);
|
||||
flh = GC_objfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_NORMAL);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc_atomic(n);
|
||||
flh = GC_aobjfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_PTRFREE);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_objfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
memset((char *)p + GC_bytes_per_word, 0,
|
||||
GC_bytes_per_word * (nwords - 1));
|
||||
*flh = p;
|
||||
GC_aux::GC_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
static void ptr_free_deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_aobjfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
*flh = p;
|
||||
GC_aux::GC_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
typedef single_client_gc_alloc_template<0> single_client_gc_alloc;
|
||||
|
||||
// Once more, for uncollectable objects.
|
||||
template <int dummy>
|
||||
class single_client_traceable_alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc_uncollectable(n);
|
||||
flh = GC_uobjfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_UNCOLLECTABLE);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_uncollectable_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
void * op;
|
||||
|
||||
if (n > GC_max_fast_bytes) return GC_malloc_atomic_uncollectable(n);
|
||||
flh = GC_auobjfreelist_ptr + nwords;
|
||||
if (0 == (op = *flh)) {
|
||||
return GC_aux::GC_out_of_line_malloc(nwords, GC_AUNCOLLECTABLE);
|
||||
}
|
||||
*flh = GC_obj_link(op);
|
||||
GC_aux::GC_uncollectable_words_recently_allocd += nwords;
|
||||
return op;
|
||||
}
|
||||
static void deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_uobjfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
*flh = p;
|
||||
GC_aux::GC_uncollectable_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
static void ptr_free_deallocate(void *p, size_t n)
|
||||
{
|
||||
size_t nwords = GC_round_up_uncollectable(n);
|
||||
void ** flh;
|
||||
|
||||
if (n > GC_max_fast_bytes) {
|
||||
GC_free(p);
|
||||
} else {
|
||||
flh = GC_auobjfreelist_ptr + nwords;
|
||||
GC_obj_link(p) = *flh;
|
||||
*flh = p;
|
||||
GC_aux::GC_uncollectable_mem_recently_freed += nwords;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
typedef single_client_traceable_alloc_template<0> single_client_traceable_alloc;
|
||||
|
||||
template < int dummy >
|
||||
class gc_alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n) { return GC_malloc(n); }
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{ return GC_malloc_atomic(n); }
|
||||
static void deallocate(void *, size_t) { }
|
||||
static void ptr_free_deallocate(void *, size_t) { }
|
||||
};
|
||||
|
||||
typedef gc_alloc_template < 0 > gc_alloc;
|
||||
|
||||
template < int dummy >
|
||||
class traceable_alloc_template {
|
||||
public:
|
||||
static void * allocate(size_t n) { return GC_malloc_uncollectable(n); }
|
||||
static void * ptr_free_allocate(size_t n)
|
||||
{ return GC_malloc_atomic_uncollectable(n); }
|
||||
static void deallocate(void *p, size_t) { GC_free(p); }
|
||||
static void ptr_free_deallocate(void *p, size_t) { GC_free(p); }
|
||||
};
|
||||
|
||||
typedef traceable_alloc_template < 0 > traceable_alloc;
|
||||
|
||||
#ifdef _SGI_SOURCE
|
||||
|
||||
// We want to specialize simple_alloc so that it does the right thing
|
||||
// for all pointerfree types. At the moment there is no portable way to
|
||||
// even approximate that. The following approximation should work for
|
||||
// SGI compilers, and perhaps some others.
|
||||
|
||||
# define __GC_SPECIALIZE(T,alloc) \
|
||||
class simple_alloc<T, alloc> { \
|
||||
public: \
|
||||
static T *allocate(size_t n) \
|
||||
{ return 0 == n? 0 : \
|
||||
(T*) alloc::ptr_free_allocate(n * sizeof (T)); } \
|
||||
static T *allocate(void) \
|
||||
{ return (T*) alloc::ptr_free_allocate(sizeof (T)); } \
|
||||
static void deallocate(T *p, size_t n) \
|
||||
{ if (0 != n) alloc::ptr_free_deallocate(p, n * sizeof (T)); } \
|
||||
static void deallocate(T *p) \
|
||||
{ alloc::ptr_free_deallocate(p, sizeof (T)); } \
|
||||
};
|
||||
|
||||
__GC_SPECIALIZE(char, gc_alloc)
|
||||
__GC_SPECIALIZE(int, gc_alloc)
|
||||
__GC_SPECIALIZE(unsigned, gc_alloc)
|
||||
__GC_SPECIALIZE(float, gc_alloc)
|
||||
__GC_SPECIALIZE(double, gc_alloc)
|
||||
|
||||
__GC_SPECIALIZE(char, traceable_alloc)
|
||||
__GC_SPECIALIZE(int, traceable_alloc)
|
||||
__GC_SPECIALIZE(unsigned, traceable_alloc)
|
||||
__GC_SPECIALIZE(float, traceable_alloc)
|
||||
__GC_SPECIALIZE(double, traceable_alloc)
|
||||
|
||||
__GC_SPECIALIZE(char, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(int, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(unsigned, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(float, single_client_gc_alloc)
|
||||
__GC_SPECIALIZE(double, single_client_gc_alloc)
|
||||
|
||||
__GC_SPECIALIZE(char, single_client_traceable_alloc)
|
||||
__GC_SPECIALIZE(int, single_client_traceable_alloc)
|
||||
__GC_SPECIALIZE(unsigned, single_client_traceable_alloc)
|
||||
__GC_SPECIALIZE(float, single_client_traceable_alloc)
|
||||
__GC_SPECIALIZE(double, single_client_traceable_alloc)
|
||||
|
||||
#ifdef __STL_USE_STD_ALLOCATORS
|
||||
|
||||
__STL_BEGIN_NAMESPACE
|
||||
|
||||
template <class _T>
|
||||
struct _Alloc_traits<_T, gc_alloc >
|
||||
{
|
||||
static const bool _S_instanceless = true;
|
||||
typedef simple_alloc<_T, gc_alloc > _Alloc_type;
|
||||
typedef __allocator<_T, gc_alloc > allocator_type;
|
||||
};
|
||||
|
||||
inline bool operator==(const gc_alloc&,
|
||||
const gc_alloc&)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool operator!=(const gc_alloc&,
|
||||
const gc_alloc&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
template <class _T>
|
||||
struct _Alloc_traits<_T, single_client_gc_alloc >
|
||||
{
|
||||
static const bool _S_instanceless = true;
|
||||
typedef simple_alloc<_T, single_client_gc_alloc > _Alloc_type;
|
||||
typedef __allocator<_T, single_client_gc_alloc > allocator_type;
|
||||
};
|
||||
|
||||
inline bool operator==(const single_client_gc_alloc&,
|
||||
const single_client_gc_alloc&)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool operator!=(const single_client_gc_alloc&,
|
||||
const single_client_gc_alloc&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
template <class _T>
|
||||
struct _Alloc_traits<_T, traceable_alloc >
|
||||
{
|
||||
static const bool _S_instanceless = true;
|
||||
typedef simple_alloc<_T, traceable_alloc > _Alloc_type;
|
||||
typedef __allocator<_T, traceable_alloc > allocator_type;
|
||||
};
|
||||
|
||||
inline bool operator==(const traceable_alloc&,
|
||||
const traceable_alloc&)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool operator!=(const traceable_alloc&,
|
||||
const traceable_alloc&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
template <class _T>
|
||||
struct _Alloc_traits<_T, single_client_traceable_alloc >
|
||||
{
|
||||
static const bool _S_instanceless = true;
|
||||
typedef simple_alloc<_T, single_client_traceable_alloc > _Alloc_type;
|
||||
typedef __allocator<_T, single_client_traceable_alloc > allocator_type;
|
||||
};
|
||||
|
||||
inline bool operator==(const single_client_traceable_alloc&,
|
||||
const single_client_traceable_alloc&)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool operator!=(const single_client_traceable_alloc&,
|
||||
const single_client_traceable_alloc&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
__STL_END_NAMESPACE
|
||||
|
||||
#endif /* __STL_USE_STD_ALLOCATORS */
|
||||
|
||||
#endif /* _SGI_SOURCE */
|
||||
|
||||
#endif /* GC_ALLOC_H */
|
||||
118
gc/include/private/cord_pos.h
Normal file
118
gc/include/private/cord_pos.h
Normal file
@@ -0,0 +1,118 @@
|
||||
/*
|
||||
* Copyright (c) 1993-1994 by Xerox Corporation. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*/
|
||||
/* Boehm, May 19, 1994 2:23 pm PDT */
|
||||
# ifndef CORD_POSITION_H
|
||||
|
||||
/* The representation of CORD_position. This is private to the */
|
||||
/* implementation, but the size is known to clients. Also */
|
||||
/* the implementation of some exported macros relies on it. */
|
||||
/* Don't use anything defined here and not in cord.h. */
|
||||
|
||||
# define MAX_DEPTH 48
|
||||
/* The maximum depth of a balanced cord + 1. */
|
||||
/* We don't let cords get deeper than MAX_DEPTH. */
|
||||
|
||||
struct CORD_pe {
|
||||
CORD pe_cord;
|
||||
size_t pe_start_pos;
|
||||
};
|
||||
|
||||
/* A structure describing an entry on the path from the root */
|
||||
/* to current position. */
|
||||
typedef struct CORD_Pos {
|
||||
size_t cur_pos;
|
||||
int path_len;
|
||||
# define CORD_POS_INVALID (0x55555555)
|
||||
/* path_len == INVALID <==> position invalid */
|
||||
const char *cur_leaf; /* Current leaf, if it is a string. */
|
||||
/* If the current leaf is a function, */
|
||||
/* then this may point to function_buf */
|
||||
/* containing the next few characters. */
|
||||
/* Always points to a valid string */
|
||||
/* containing the current character */
|
||||
/* unless cur_end is 0. */
|
||||
size_t cur_start; /* Start position of cur_leaf */
|
||||
size_t cur_end; /* Ending position of cur_leaf */
|
||||
/* 0 if cur_leaf is invalid. */
|
||||
struct CORD_pe path[MAX_DEPTH + 1];
|
||||
/* path[path_len] is the leaf corresponding to cur_pos */
|
||||
/* path[0].pe_cord is the cord we point to. */
|
||||
# define FUNCTION_BUF_SZ 8
|
||||
char function_buf[FUNCTION_BUF_SZ]; /* Space for next few chars */
|
||||
/* from function node. */
|
||||
} CORD_pos[1];
|
||||
|
||||
/* Extract the cord from a position: */
|
||||
CORD CORD_pos_to_cord(CORD_pos p);
|
||||
|
||||
/* Extract the current index from a position: */
|
||||
size_t CORD_pos_to_index(CORD_pos p);
|
||||
|
||||
/* Fetch the character located at the given position: */
|
||||
char CORD_pos_fetch(CORD_pos p);
|
||||
|
||||
/* Initialize the position to refer to the give cord and index. */
|
||||
/* Note that this is the most expensive function on positions: */
|
||||
void CORD_set_pos(CORD_pos p, CORD x, size_t i);
|
||||
|
||||
/* Advance the position to the next character. */
|
||||
/* P must be initialized and valid. */
|
||||
/* Invalidates p if past end: */
|
||||
void CORD_next(CORD_pos p);
|
||||
|
||||
/* Move the position to the preceding character. */
|
||||
/* P must be initialized and valid. */
|
||||
/* Invalidates p if past beginning: */
|
||||
void CORD_prev(CORD_pos p);
|
||||
|
||||
/* Is the position valid, i.e. inside the cord? */
|
||||
int CORD_pos_valid(CORD_pos p);
|
||||
|
||||
char CORD__pos_fetch(CORD_pos);
|
||||
void CORD__next(CORD_pos);
|
||||
void CORD__prev(CORD_pos);
|
||||
|
||||
#define CORD_pos_fetch(p) \
|
||||
(((p)[0].cur_end != 0)? \
|
||||
(p)[0].cur_leaf[(p)[0].cur_pos - (p)[0].cur_start] \
|
||||
: CORD__pos_fetch(p))
|
||||
|
||||
#define CORD_next(p) \
|
||||
(((p)[0].cur_pos + 1 < (p)[0].cur_end)? \
|
||||
(p)[0].cur_pos++ \
|
||||
: (CORD__next(p), 0))
|
||||
|
||||
#define CORD_prev(p) \
|
||||
(((p)[0].cur_end != 0 && (p)[0].cur_pos > (p)[0].cur_start)? \
|
||||
(p)[0].cur_pos-- \
|
||||
: (CORD__prev(p), 0))
|
||||
|
||||
#define CORD_pos_to_index(p) ((p)[0].cur_pos)
|
||||
|
||||
#define CORD_pos_to_cord(p) ((p)[0].path[0].pe_cord)
|
||||
|
||||
#define CORD_pos_valid(p) ((p)[0].path_len != CORD_POS_INVALID)
|
||||
|
||||
/* Some grubby stuff for performance-critical friends: */
|
||||
#define CORD_pos_chars_left(p) ((long)((p)[0].cur_end) - (long)((p)[0].cur_pos))
|
||||
/* Number of characters in cache. <= 0 ==> none */
|
||||
|
||||
#define CORD_pos_advance(p,n) ((p)[0].cur_pos += (n) - 1, CORD_next(p))
|
||||
/* Advance position by n characters */
|
||||
/* 0 < n < CORD_pos_chars_left(p) */
|
||||
|
||||
#define CORD_pos_cur_char_addr(p) \
|
||||
(p)[0].cur_leaf + ((p)[0].cur_pos - (p)[0].cur_start)
|
||||
/* address of current character in cache. */
|
||||
|
||||
#endif
|
||||
135
gc/include/private/gc_hdrs.h
Normal file
135
gc/include/private/gc_hdrs.h
Normal file
@@ -0,0 +1,135 @@
|
||||
/*
|
||||
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
||||
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program
|
||||
* for any purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is granted,
|
||||
* provided the above notices are retained, and a notice that the code was
|
||||
* modified is included with the above copyright notice.
|
||||
*/
|
||||
/* Boehm, July 11, 1995 11:54 am PDT */
|
||||
# ifndef GC_HEADERS_H
|
||||
# define GC_HEADERS_H
|
||||
typedef struct hblkhdr hdr;
|
||||
|
||||
# if CPP_WORDSZ != 32 && CPP_WORDSZ < 36
|
||||
--> Get a real machine.
|
||||
# endif
|
||||
|
||||
/*
|
||||
* The 2 level tree data structure that is used to find block headers.
|
||||
* If there are more than 32 bits in a pointer, the top level is a hash
|
||||
* table.
|
||||
*/
|
||||
|
||||
# if CPP_WORDSZ > 32
|
||||
# define HASH_TL
|
||||
# endif
|
||||
|
||||
/* Define appropriate out-degrees for each of the two tree levels */
|
||||
# ifdef SMALL_CONFIG
|
||||
# define LOG_BOTTOM_SZ 11
|
||||
/* Keep top index size reasonable with smaller blocks. */
|
||||
# else
|
||||
# define LOG_BOTTOM_SZ 10
|
||||
# endif
|
||||
# ifndef HASH_TL
|
||||
# define LOG_TOP_SZ (WORDSZ - LOG_BOTTOM_SZ - LOG_HBLKSIZE)
|
||||
# else
|
||||
# define LOG_TOP_SZ 11
|
||||
# endif
|
||||
# define TOP_SZ (1 << LOG_TOP_SZ)
|
||||
# define BOTTOM_SZ (1 << LOG_BOTTOM_SZ)
|
||||
|
||||
typedef struct bi {
|
||||
hdr * index[BOTTOM_SZ];
|
||||
/*
|
||||
* The bottom level index contains one of three kinds of values:
|
||||
* 0 means we're not responsible for this block,
|
||||
* or this is a block other than the first one in a free block.
|
||||
* 1 < (long)X <= MAX_JUMP means the block starts at least
|
||||
* X * HBLKSIZE bytes before the current address.
|
||||
* A valid pointer points to a hdr structure. (The above can't be
|
||||
* valid pointers due to the GET_MEM return convention.)
|
||||
*/
|
||||
struct bi * asc_link; /* All indices are linked in */
|
||||
/* ascending order... */
|
||||
struct bi * desc_link; /* ... and in descending order. */
|
||||
word key; /* high order address bits. */
|
||||
# ifdef HASH_TL
|
||||
struct bi * hash_link; /* Hash chain link. */
|
||||
# endif
|
||||
} bottom_index;
|
||||
|
||||
/* extern bottom_index GC_all_nils; - really part of GC_arrays */
|
||||
|
||||
/* extern bottom_index * GC_top_index []; - really part of GC_arrays */
|
||||
/* Each entry points to a bottom_index. */
|
||||
/* On a 32 bit machine, it points to */
|
||||
/* the index for a set of high order */
|
||||
/* bits equal to the index. For longer */
|
||||
/* addresses, we hash the high order */
|
||||
/* bits to compute the index in */
|
||||
/* GC_top_index, and each entry points */
|
||||
/* to a hash chain. */
|
||||
/* The last entry in each chain is */
|
||||
/* GC_all_nils. */
|
||||
|
||||
|
||||
# define MAX_JUMP (HBLKSIZE - 1)
|
||||
|
||||
# define HDR_FROM_BI(bi, p) \
|
||||
((bi)->index[((word)(p) >> LOG_HBLKSIZE) & (BOTTOM_SZ - 1)])
|
||||
# ifndef HASH_TL
|
||||
# define BI(p) (GC_top_index \
|
||||
[(word)(p) >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE)])
|
||||
# define HDR_INNER(p) HDR_FROM_BI(BI(p),p)
|
||||
# ifdef SMALL_CONFIG
|
||||
# define HDR(p) GC_find_header((ptr_t)(p))
|
||||
# else
|
||||
# define HDR(p) HDR_INNER(p)
|
||||
# endif
|
||||
# define GET_BI(p, bottom_indx) (bottom_indx) = BI(p)
|
||||
# define GET_HDR(p, hhdr) (hhdr) = HDR(p)
|
||||
# define SET_HDR(p, hhdr) HDR_INNER(p) = (hhdr)
|
||||
# define GET_HDR_ADDR(p, ha) (ha) = &(HDR_INNER(p))
|
||||
# else /* hash */
|
||||
/* Hash function for tree top level */
|
||||
# define TL_HASH(hi) ((hi) & (TOP_SZ - 1))
|
||||
/* Set bottom_indx to point to the bottom index for address p */
|
||||
# define GET_BI(p, bottom_indx) \
|
||||
{ \
|
||||
register word hi = \
|
||||
(word)(p) >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE); \
|
||||
register bottom_index * _bi = GC_top_index[TL_HASH(hi)]; \
|
||||
\
|
||||
while (_bi -> key != hi && _bi != GC_all_nils) \
|
||||
_bi = _bi -> hash_link; \
|
||||
(bottom_indx) = _bi; \
|
||||
}
|
||||
# define GET_HDR_ADDR(p, ha) \
|
||||
{ \
|
||||
register bottom_index * bi; \
|
||||
\
|
||||
GET_BI(p, bi); \
|
||||
(ha) = &(HDR_FROM_BI(bi, p)); \
|
||||
}
|
||||
# define GET_HDR(p, hhdr) { register hdr ** _ha; GET_HDR_ADDR(p, _ha); \
|
||||
(hhdr) = *_ha; }
|
||||
# define SET_HDR(p, hhdr) { register hdr ** _ha; GET_HDR_ADDR(p, _ha); \
|
||||
*_ha = (hhdr); }
|
||||
# define HDR(p) GC_find_header((ptr_t)(p))
|
||||
# endif
|
||||
|
||||
/* Is the result a forwarding address to someplace closer to the */
|
||||
/* beginning of the block or NIL? */
|
||||
# define IS_FORWARDING_ADDR_OR_NIL(hhdr) ((unsigned long) (hhdr) <= MAX_JUMP)
|
||||
|
||||
/* Get an HBLKSIZE aligned address closer to the beginning of the block */
|
||||
/* h. Assumes hhdr == HDR(h) and IS_FORWARDING_ADDR(hhdr). */
|
||||
# define FORWARDED_ADDR(h, hhdr) ((struct hblk *)(h) - (unsigned long)(hhdr))
|
||||
# endif /* GC_HEADERS_H */
|
||||
1748
gc/include/private/gc_priv.h
Normal file
1748
gc/include/private/gc_priv.h
Normal file
File diff suppressed because it is too large
Load Diff
1099
gc/include/private/gcconfig.h
Normal file
1099
gc/include/private/gcconfig.h
Normal file
File diff suppressed because it is too large
Load Diff
221
gc/include/weakpointer.h
Normal file
221
gc/include/weakpointer.h
Normal file
@@ -0,0 +1,221 @@
|
||||
#ifndef _weakpointer_h_
|
||||
#define _weakpointer_h_
|
||||
|
||||
/****************************************************************************
|
||||
|
||||
WeakPointer and CleanUp
|
||||
|
||||
Copyright (c) 1991 by Xerox Corporation. All rights reserved.
|
||||
|
||||
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
||||
OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
|
||||
Permission is hereby granted to copy this code for any purpose,
|
||||
provided the above notices are retained on all copies.
|
||||
|
||||
Last modified on Mon Jul 17 18:16:01 PDT 1995 by ellis
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
/****************************************************************************
|
||||
|
||||
WeakPointer
|
||||
|
||||
A weak pointer is a pointer to a heap-allocated object that doesn't
|
||||
prevent the object from being garbage collected. Weak pointers can be
|
||||
used to track which objects haven't yet been reclaimed by the
|
||||
collector. A weak pointer is deactivated when the collector discovers
|
||||
its referent object is unreachable by normal pointers (reachability
|
||||
and deactivation are defined more precisely below). A deactivated weak
|
||||
pointer remains deactivated forever.
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
|
||||
template< class T > class WeakPointer {
|
||||
public:
|
||||
|
||||
WeakPointer( T* t = 0 )
|
||||
/* Constructs a weak pointer for *t. t may be null. It is an error
|
||||
if t is non-null and *t is not a collected object. */
|
||||
{impl = _WeakPointer_New( t );}
|
||||
|
||||
T* Pointer()
|
||||
/* wp.Pointer() returns a pointer to the referent object of wp or
|
||||
null if wp has been deactivated (because its referent object
|
||||
has been discovered unreachable by the collector). */
|
||||
{return (T*) _WeakPointer_Pointer( this->impl );}
|
||||
|
||||
int operator==( WeakPointer< T > wp2 )
|
||||
/* Given weak pointers wp1 and wp2, if wp1 == wp2, then wp1 and
|
||||
wp2 refer to the same object. If wp1 != wp2, then either wp1
|
||||
and wp2 don't refer to the same object, or if they do, one or
|
||||
both of them has been deactivated. (Note: If objects t1 and t2
|
||||
are never made reachable by their clean-up functions, then
|
||||
WeakPointer<T>(t1) == WeakPointer<T>(t2) if and only t1 == t2.) */
|
||||
{return _WeakPointer_Equal( this->impl, wp2.impl );}
|
||||
|
||||
int Hash()
|
||||
/* Returns a hash code suitable for use by multiplicative- and
|
||||
division-based hash tables. If wp1 == wp2, then wp1.Hash() ==
|
||||
wp2.Hash(). */
|
||||
{return _WeakPointer_Hash( this->impl );}
|
||||
|
||||
private:
|
||||
void* impl;
|
||||
};
|
||||
|
||||
/*****************************************************************************
|
||||
|
||||
CleanUp
|
||||
|
||||
A garbage-collected object can have an associated clean-up function
|
||||
that will be invoked some time after the collector discovers the
|
||||
object is unreachable via normal pointers. Clean-up functions can be
|
||||
used to release resources such as open-file handles or window handles
|
||||
when their containing objects become unreachable. If a C++ object has
|
||||
a non-empty explicit destructor (i.e. it contains programmer-written
|
||||
code), the destructor will be automatically registered as the object's
|
||||
initial clean-up function.
|
||||
|
||||
There is no guarantee that the collector will detect every unreachable
|
||||
object (though it will find almost all of them). Clients should not
|
||||
rely on clean-up to cause some action to occur immediately -- clean-up
|
||||
is only a mechanism for improving resource usage.
|
||||
|
||||
Every object with a clean-up function also has a clean-up queue. When
|
||||
the collector finds the object is unreachable, it enqueues it on its
|
||||
queue. The clean-up function is applied when the object is removed
|
||||
from the queue. By default, objects are enqueued on the garbage
|
||||
collector's queue, and the collector removes all objects from its
|
||||
queue after each collection. If a client supplies another queue for
|
||||
objects, it is his responsibility to remove objects (and cause their
|
||||
functions to be called) by polling it periodically.
|
||||
|
||||
Clean-up queues allow clean-up functions accessing global data to
|
||||
synchronize with the main program. Garbage collection can occur at any
|
||||
time, and clean-ups invoked by the collector might access data in an
|
||||
inconsistent state. A client can control this by defining an explicit
|
||||
queue for objects and polling it at safe points.
|
||||
|
||||
The following definitions are used by the specification below:
|
||||
|
||||
Given a pointer t to a collected object, the base object BO(t) is the
|
||||
value returned by new when it created the object. (Because of multiple
|
||||
inheritance, t and BO(t) may not be the same address.)
|
||||
|
||||
A weak pointer wp references an object *t if BO(wp.Pointer()) ==
|
||||
BO(t).
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
template< class T, class Data > class CleanUp {
|
||||
public:
|
||||
|
||||
static void Set( T* t, void c( Data* d, T* t ), Data* d = 0 )
|
||||
/* Sets the clean-up function of object BO(t) to be <c, d>,
|
||||
replacing any previously defined clean-up function for BO(t); c
|
||||
and d can be null, but t cannot. Sets the clean-up queue for
|
||||
BO(t) to be the collector's queue. When t is removed from its
|
||||
clean-up queue, its clean-up will be applied by calling c(d,
|
||||
t). It is an error if *t is not a collected object. */
|
||||
{_CleanUp_Set( t, c, d );}
|
||||
|
||||
static void Call( T* t )
|
||||
/* Sets the new clean-up function for BO(t) to be null and, if the
|
||||
old one is non-null, calls it immediately, even if BO(t) is
|
||||
still reachable. Deactivates any weak pointers to BO(t). */
|
||||
{_CleanUp_Call( t );}
|
||||
|
||||
class Queue {public:
|
||||
Queue()
|
||||
/* Constructs a new queue. */
|
||||
{this->head = _CleanUp_Queue_NewHead();}
|
||||
|
||||
void Set( T* t )
|
||||
/* q.Set(t) sets the clean-up queue of BO(t) to be q. */
|
||||
{_CleanUp_Queue_Set( this->head, t );}
|
||||
|
||||
int Call()
|
||||
/* If q is non-empty, q.Call() removes the first object and
|
||||
calls its clean-up function; does nothing if q is
|
||||
empty. Returns true if there are more objects in the
|
||||
queue. */
|
||||
{return _CleanUp_Queue_Call( this->head );}
|
||||
|
||||
private:
|
||||
void* head;
|
||||
};
|
||||
};
|
||||
|
||||
/**********************************************************************
|
||||
|
||||
Reachability and Clean-up
|
||||
|
||||
An object O is reachable if it can be reached via a non-empty path of
|
||||
normal pointers from the registers, stacks, global variables, or an
|
||||
object with a non-null clean-up function (including O itself),
|
||||
ignoring pointers from an object to itself.
|
||||
|
||||
This definition of reachability ensures that if object B is accessible
|
||||
from object A (and not vice versa) and if both A and B have clean-up
|
||||
functions, then A will always be cleaned up before B. Note that as
|
||||
long as an object with a clean-up function is contained in a cycle of
|
||||
pointers, it will always be reachable and will never be cleaned up or
|
||||
collected.
|
||||
|
||||
When the collector finds an unreachable object with a null clean-up
|
||||
function, it atomically deactivates all weak pointers referencing the
|
||||
object and recycles its storage. If object B is accessible from object
|
||||
A via a path of normal pointers, A will be discovered unreachable no
|
||||
later than B, and a weak pointer to A will be deactivated no later
|
||||
than a weak pointer to B.
|
||||
|
||||
When the collector finds an unreachable object with a non-null
|
||||
clean-up function, the collector atomically deactivates all weak
|
||||
pointers referencing the object, redefines its clean-up function to be
|
||||
null, and enqueues it on its clean-up queue. The object then becomes
|
||||
reachable again and remains reachable at least until its clean-up
|
||||
function executes.
|
||||
|
||||
The clean-up function is assured that its argument is the only
|
||||
accessible pointer to the object. Nothing prevents the function from
|
||||
redefining the object's clean-up function or making the object
|
||||
reachable again (for example, by storing the pointer in a global
|
||||
variable).
|
||||
|
||||
If the clean-up function does not make its object reachable again and
|
||||
does not redefine its clean-up function, then the object will be
|
||||
collected by a subsequent collection (because the object remains
|
||||
unreachable and now has a null clean-up function). If the clean-up
|
||||
function does make its object reachable again and a clean-up function
|
||||
is subsequently redefined for the object, then the new clean-up
|
||||
function will be invoked the next time the collector finds the object
|
||||
unreachable.
|
||||
|
||||
Note that a destructor for a collected object cannot safely redefine a
|
||||
clean-up function for its object, since after the destructor executes,
|
||||
the object has been destroyed into "raw memory". (In most
|
||||
implementations, destroying an object mutates its vtbl.)
|
||||
|
||||
Finally, note that calling delete t on a collected object first
|
||||
deactivates any weak pointers to t and then invokes its clean-up
|
||||
function (destructor).
|
||||
|
||||
**********************************************************************/
|
||||
|
||||
extern "C" {
|
||||
void* _WeakPointer_New( void* t );
|
||||
void* _WeakPointer_Pointer( void* wp );
|
||||
int _WeakPointer_Equal( void* wp1, void* wp2 );
|
||||
int _WeakPointer_Hash( void* wp );
|
||||
void _CleanUp_Set( void* t, void (*c)( void* d, void* t ), void* d );
|
||||
void _CleanUp_Call( void* t );
|
||||
void* _CleanUp_Queue_NewHead ();
|
||||
void _CleanUp_Queue_Set( void* h, void* t );
|
||||
int _CleanUp_Queue_Call( void* h );
|
||||
}
|
||||
|
||||
#endif /* _weakpointer_h_ */
|
||||
|
||||
|
||||
Reference in New Issue
Block a user